

A dynamical study of concomitant tumor resistance

<u>S. Benzekry^{1,2}, C. Lamont², L. Hlatky² and P. Hahnfeldt²</u> MMLS, Bedlewo, Poland, June 2015

¹INRIA, Bordeaux ²Center of Cancer and Systems Biology, Boston

What is concomitant tumor resistance?

- Inhibition of secondary growth by the primary mass
- Evidenced more than 100 years ago Ehrlich, 1906
- Primary hypothesis: athrepsia (deprivation of **nutrients**)
- Other hypothesis: immune enhancement from the primary. "Concomitant immunity"
- 1980's: it happens in immune-deprived mice Gorelik,, Cancer Res 1983
- 1990's: Folkman's work on systemic inhibition of angiogenesis (SIA)
 O'Reilly, Folkman et al., Cell, 1994
- Others also proposed direct distant inhibition of proliferation

Post-surgery metastatic acceleration

- **Clinically** evidenced from:
 - Patients cases reports Coffey et al., Excisional surgery for cancer cure: therapy at a cost, Lancet Oncology, 2003
 - Bimodal relapse hazard (breast) Retsky et al., Surgery triggers outgrowth of latent distant disease in breast cancer: an inconvenient truth?, Cancers 2010
- Reported in numerous animal experiments since more than 100 years
 Marie and Clunet, 1910
- Could be due to the surgical trauma itself
- Experiments suggested other hypothesis, linked with metastatic dormancy
- Concomitant resistance

Figure 2. The Presence of a Primary Tumor Is Associated with an Inhibition of Neovascularization and Growth of Its Metastases

O'Reilly, Folkman et al., Angiostatin: A Novel Angiogenesis Inhibitor That Mediates te Suppression of Metastases by a Lewis Lung Carcinoma, Cell 1994

Objectives

- Are we able to give a mathematical description of the dynamics of concomitant resistance?
- Minimally parameterized, biologically and data-based mathematical model(s) of the process
- Test different biological hypotheses by confronting the (mathematical) theories to the empirical data

Experiment

- Injection s.c. of two tumors of 10⁶ LLC cells in C57/BL6 mice
- Two groups
 - Control: only one tumor
 - Group S: simultaneous
 injection of cells in two
 different sites
- Record tumor growth in time at the two sites

Bets

A mouse with two tumors

Something happens. One tumor has normal volume and the other is smaller

Statistical confirmation

- We want to test: is the couple (L_S(t), R_S(t)) statistically different from a couple of two tumors growing independently?
- Generate an artificial group of double independent tumors by randomly dividing the control group (n=20) in 2 and pairing couples of growth curves from each subgroup
- Compare the large/small tumors of group S to the large/small tumors of the virtual control group

Single-tumor growth models

Exponential V_0

$$\begin{cases} \frac{dV}{dt} = aV\\ V(t=0) = V_0 \end{cases}$$

Power law

$$\left\{ \begin{array}{l} \frac{dV}{dt} = aV^{\gamma} \\ V(t=0) = 1 \ mm^3 = 10^6 \ cells \end{array} \right. \label{eq:eq:var_eq}$$

Gompertz

 $\begin{cases} \frac{dV}{dt} = aV \ln\left(\frac{K}{V}\right) \\ V(t=0) = 1 \ mm^3 = 10^6 \ cells \end{cases}$

Two-tumors modeling

Ínría

Asymmetric inhibition

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K}{V_1}\right), & V_1(t=0) = 1\\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_2}\right) - eI(V_1, V_2), & V_2(t=0) = 1 \end{cases}$$

was able to fit the data but **biologically unrealistic**

• Asymmetric inhibition $\begin{cases}
\frac{dV_1}{dt} = aV_1 \ln \left(\frac{K}{V_1}\right), & V_1(t = 0) \\
\frac{dV_2}{dt} = aV_2 \ln \left(\frac{K}{V_2}\right) - eI(V_1, V_2), & V_2(t = 0) = 1
\end{cases}$ was able to fit the data but biologically unrealistic

• Asymmetric inhibition

$$\begin{bmatrix}
\frac{dV_1}{dt} = aV_1 \ln \left(\frac{K}{V_1}\right), & V_1(t=0) & V_1(t=0) \\
\frac{dV_2}{dt} = aV_2 \ln \left(\frac{K}{V_2}\right) - eI(V_1, V_1, V_2, V_2(t=0)) = 1$$
was able to fit the data but biologically unrealistic

Symmetric direct inhibition

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K}{V_1}\right) - eI_1(V_1, V_2), & V_1(t=0) = 1\\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_2}\right) - eI_2(V_1, V_2), & V_2(t=0) = V_{0,2} \end{cases}$$

- Same growth and inhibition parameters for V_1 and V_2
- Symmetry: $I_1(V_2, V_1) = I_2(V_1, V_2)$
- Three possibilities for the shape of $I_1(V_1, V_2)$ shown here: V_1V_2 (1), V_2 (2), $(V_1+V_2)V_1$ (3)

Hypothesis for the origin of dissymmetry between V_1 and V_2

comes from the initial number of cells that « take »

Indirect (angiogenesis-related) inhibition

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K_1}{V_1}\right), & V_1(t=0) = 1\\ \frac{dK_1}{dt} = bV_1 - dV_1^{2/3}K_1 - eI_1(V_1, V_2), & K_1(t=0) = K_0\\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_2}\right), & V_2(t=0) = V_{0,2}\\ \frac{dK_2}{dt} = bV_2 - dV_2^{2/3}K_2 - eI_2(V_1, V_2) & K_2(t=0) = K_0 \end{cases}$$

- Based on the Hahnfeldt model Hahnfeldt et al., Cancer Res, 1999 with dynamic carrying capacity K
- Parameters *d* and *K*₀ were fixed

Competition (athrepsia hypothesis)

$$\begin{cases} \frac{dV_1}{dt} = aV_1 \ln\left(\frac{K}{V_1 + V_2}\right), & V_1(t=0) = 1\\ \frac{dV_2}{dt} = aV_2 \ln\left(\frac{K}{V_1 + V_2}\right), & V_2(t=0) = V_{0,2} \end{cases}$$

 One parameter (degree of freedom) less than the other models

Direct inhibition (2) fit

— Model – – Model with e=0

- Gives satisfactory fit
- ▶ Behavior when *e* = 0 is realistic
- Kinetic differences between V_1 and V_2 are mostly due to inhibition (and not to difference in $V_{0,2}$)

Competition model

Also gives satisfactory fit (and thus, possible explanatory hypothesis)

Models able to fit

- Criterias for rejection of a model:
 - Inaccurate visual goodness-of-fit
 - Yielding biologically unrealistic behavior when e = 0

Index	1	2	3	
I_1	V_2V_1	V_2	$(V_1 + V_2)V_1$	
I_2	V_1V_2	V_1	$(V_1 + V_2)V_2$	
Direct Inhibition	x	Ο	X	
Indirect Inhibition	х	0	X	
Competition	0			

Goodness-of-fit metrics

Model	SSE	AIC	RMSE	R2	$\mathbf{p} > 0.05$	#
Direct 2	0.183(0.102 - 0.388)[1]	-17.6(-31.26.08)[1]	0.428(0.324 - 0.63)[1]	0.973(0.934 - 0.991)[1]	100	4
Competition	0.241(0.102 - 0.398)[2]	-15.8(-333.96)[2]	0.492(0.326 - 0.635)[2]	0.956(0.871 - 0.99)[3]	100	3
Indirect 2	0.273(0.151 - 0.506)[3]	-10.9(-24.11.58)[3]	0.523(0.393 - 0.715)[3]	0.967(0.934 - 0.986)[2]	100	4

SSE = Sum of Squared Errors, AIC = Akaike Information Criterion, RMSE= Root Mean Squared Errors

Parameter values/identifiability

Model	Par.	\mathbf{Unit}	Median value (CV)	NSE (%)	95% CI
Direct 2	$a \\ K \\ V_{0,2} \\ e$	- - -	$\begin{array}{c} 0.0957 \ (21.9) \\ 1.02e{+}04 \ (90.2) \\ 0.58 \ (64.4) \\ 0.048 \ (91.5) \end{array}$	$ 11.3 \\ 46.5 \\ 8.9 \\ 2.35 $	(0.044, 0.052)
Competition	$a \\ K \\ V_{0,2}$	- - -	$\begin{array}{c} 0.0988 \ (28.8) \\ 8.52e{+}03 \ (82.2) \\ 0.402 \ (63.1) \end{array}$	$11.2 \\ 42.1 \\ 12.5$	_
Indirect 2	$egin{a} a \\ b \\ V_{0,2} \\ e \end{array}$	- - -	$\begin{array}{c} 0.206 \ (35.8) \\ 18.7 \ (32.1) \\ 0.685 \ (45.3) \\ 4.07 \ (57.8) \end{array}$	$7.81 \\ 13.2 \\ 11.8 \\ 1.36$	(3.96, 4.18)

NSE = Normalized Standard error

CV = Coefficient of Variation

Summary

- In mice bearing two tumors implanted simultaneously, tumor growth is suppressed in one of the two tumors
- Single tumor growth models were not able to explain the dynamical discrepancies
- New quantitative and identifiable mathematical models of tumor-tumor growth interactions were developed and able to match the data. 20+ models tested
- Possible explanation of dissymmetry: difference in number of cells that take
- Based only on tumor growth kinetics we could not clearly discriminate between three possible theories: competition, direct or indirect (angiogenesis) inhibition
- But we could discriminate the shape of the inhibition term: $I_1(V_1, V_2) = V_2$