Biological motivation

Low grade gliomas (LGGs) - slowly growing, incurable brain tumours. They occur in young and otherwise healthy patients; life-prolonging treatment should not come at the cost of compromising the quality of life. Management decisions, whether and when should a patient receive resection, radio- or chemotherapy, are not fully standardized. Due to long patients' survival, clinical trials on LGGs require about ten years to test a single hypothesis.

Chemotherapy for LGGs

Temozolomide (TMZ) - a drug of choice for clinicians, effective for both previously irradiated and unrradiated LGGs. TMZ-induced damage provoke mitotic catastrophe causing cell death long after the end of therapy as observed in clinics [1,2]. Proper timing and fractionation of TMZ treatment - unknown.

Questions

How can we model chemotherapy for LGGs? Could we estimate their aggressiveness and response to standard therapies causing minimal cytotoxicity?

⁷ Tumour volume evolution for patients treated with TMZ (treatment duration marked with vertical dashed lines). We fit ρ using volumes before chemotherapy onset, based on following data we estimate α and k. Method: weighted least squares. (left) Patient treated with 4 TMZ cycles, $\rho = 0.002416$ /day, k = 0.2722, $\alpha = 1.387798$ ml/µg/day. (right) Patient treated with 5 TMZ cycles, $\rho = 0.001761/day, k = 0.555867, \alpha = 0.971918 ml/\mu g/day.$

Mathematical model suggests a way to assess LGG malignancy

M.U. Bogdańska, M. Bodnar, J. Belmonte-Beitia, M. Murek, P. Schucht, J. Beck, V. M. Pérez-García

Future research

- verify hypothesis on larger data set
- propose suitable "probing procedure"
- optimize treatment schedules giving the longest PFS possible while maintaining the toxicity in acceptable levels
- include more biological details (acquiring chemoresistance, stem cells)

References

- [1] M. Chamberlain, *Temozolomide for recurrent low-grade spinal cord gliomas in adults*, Cancer 113 (5) (2008) 1019-24
- [2] D. Ricard, G. Kaloshi, A. Amiel-Benouaich, J. Lejeune, Y. Marie, E. Mandonnet, M. Kujas, K. Mokhtari, S. Taillibert, F. Laigle-Donadey, A. Carpentier, A. Omuro, L. Capelle, H. Duau, P. Cornu, R. Guillevin, M. Sanson, K. Hoang-Xuan, J. Delattre, Dynamic history of low-grade gliomas before and after temozolomide treatment, Annals of Neurology 61 (5) (2007) 484-90
- [3] J. Portnow, B. Badie, M. Chen, A. Liu, S. Blanchard, T. Synold, *The neuropharmacokinetics* of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation, Clinical Cancer Research 15 (22) (2009) 7092-8
- [4] C. Gerin, J. Pallud, B. Grammaticos, E. Mandonnet, C. Deroulers, P. Varlet, L. Capelle, L. Taillandier, L. Bauchet, H. Duau, M. Badoual, *Improving the time-machine: estimating date of birth of grade II* gliomas, Cell Proliferation 45 (1) (2012) 76-90
- [5] M.Bogdańska, M.Bodnar, J.Belmonte-Beitia, M.Murek, P.Schucht, J.Beck, V.M. Perez-Garcia, Mathematical model suggests a way to assess low grade glioma malignancy, Proceedings of the XX National Conference Applications of Mathematics in Biology and Medicine, Łóchów (2014) 21-28 The design of this poster is based on work of Felix Breuer.

Tumour response dependence on main prameters

burden (critical size causing death).

Model fitting to patients' data

$$z_{0}e^{\frac{\tilde{k}-\mu-z_{0}}{\mu}}-\tilde{k}+\mu+\left(\tilde{k}-\mu-z_{0}\right)e^{\left(\tilde{k}-\mu\right)\rho-\frac{z_{0}}{\mu}}\right\}$$

$$\frac{1-e^{\left(-pw_{0}+\tilde{k}\rho T\right)\frac{n}{p}}\left(1-e^{\left(-w_{0}+\tilde{k}\rho r\right)p}\right)}{pw_{0}+\tilde{k}\rho T\right)\left(1-e^{-w_{0}+\tilde{k}\rho r}\right)\left(\tilde{k}-\mu-z_{0}\right)\left(\tilde{k}-\mu\right)}\right\}$$

 $t_{\rm PFS} = \frac{nw_0}{\tilde{k}\rho} + \frac{1}{\tilde{k}\rho} \ln\left\{\frac{z_0 p}{\mu k} \left(1 - e^{-pw_0 + \tilde{k}\rho T}\right) \left(1 - e^{-nw_0 + \tilde{k}\rho T \frac{n}{p}}\right)\right\}$

II

Relative difference between progression-free survival calculated from simulations and estimated formulas.

 $\rho_1 > \rho_2$

P(t) - functionally alive glioma cells D(t) - cells irreversibly damaged by chemotherapy C(t) - drug concentration in brain Chemotherapy consists of a sequence of doses d_1, d_2, \ldots, d_n given at times $t_1 < t_2 < \ldots < t_n$. $P(t_1) = P_1, \quad D(t_1) = 0$

 $\mathrm{d}D$

 $P(t_j) = P(t_j^-), \quad D(t_j) = D(t_j^-),$ $C(t_j) = C(t_j^-) + C_j$ for j = 1, ..., n

Assumptions

As therapy cause a tumour mass reduction, $\begin{pmatrix} \bot \end{pmatrix}$ we can assume that the total tumour mass at the time around PFS is substantially smaller than the carrying capacity

Each dose is cleared in one day [3] $z(s) \approx \int z_0 e^{-\mu (s-s_j)} \quad s \in (s_j, s_j + \rho) \quad (s) \quad e^{-\mu t} - 1 \approx \begin{cases} -\mu t & 0 \le t < \frac{1}{\mu} \\ -1 & t \ge \frac{1}{\mu} \end{cases}$

Denoting
$$w(s) = \int_0^s z(t) dt$$
, $w_0 = w(\rho) = \frac{z_0}{\mu} \left(1 x(s) = x_0 e^s - nw_0, \quad y(s) = \int_0^s e^{-\frac{s-s}{k}} dt \right)$

 $ke^{(1+1/k)s_{\text{PFS}} - nw_0} = \int_0^{s_{\text{PFS}}} e^{(1+1/k)t - w(t)} z(t) dt$

$$s_{\rm PFS} = \frac{1}{\tilde{k}} \left[nw_0 + \ln\left(\frac{1}{k} \int_0^{s_{\rm PFS}} e^{\tilde{k}t} - u\right) \right]$$

$$_{0}\left(\sum_{j=1}^{n}\mathrm{e}^{-(j-1)w_{0}+\tilde{k}s_{j}}\right)\int_{0}^{\rho}$$

LGGs' net cell division is given by logistic term with parameter ρ_{\cdot}

TMZ administration is treated as a discontinuous change in its concentration. Then it decays exponentially owing to drug

> The number of cells damaged by TMZ in a time unit is proportional to concentration of drug and number of proliferating tumour cells with rate α .

> > Glioma cells irreversibly damaged by TMZ try to enter mitosis with the same probability as those active and die after such k attempts, resulting in "negative" proliferation with coefficient $-\rho/k$.

Parameters' values carrying capacity K - from max.
gliomas' diameter (~10 cm) [2] rate of TMZ decay λ - from TMZ
S half-life clearance [3]
proliferation rate ρ - usually $(1-5) \cdot 10^{-3}$ /day (its inverse = typical cell doubling time) [4]
ears) 6 ears) 6 ears) 6 ears) 6 ears) 6 ears) 6 ears) 6 ears) 7 6 ears) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
doses
cycles of 28 days: • 5 days of dosing • 23 days of break
dose: 150mg/day/m ² of

Clinical implications

patient body surface

Short progression-free survival correlates with a poorer outcome.

dea: use chemotherapy to probe tumour, iding estimates of tumour-specic parameters

Tumour which attains its minimal volume soon after short course of TMZ treatment (has shorter PFS) may be more aggressive \implies TMZ treatment has to be finished soon, other therapeutical options should be considered.