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How to maintain heterogeneity while reducing the tumour volume? l
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Presentation of the experiment
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© Under a constant treatment
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System of equations
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Study of trajectories
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Study of trajectories
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An algorithm for stabilization
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Stabilization problem
Given an initial data (s(0), r(0)) bring the system as close as possible to
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An algorithm for stabilization
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An algorithm for stabilization
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An algorithm for stabilization

Results on Scilab
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© Optimization of the treatment
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@ Numerical results
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A new problem

Optimization problem

Given 5(0), r(0) and T, under the condition C(t) < Cnax, minimize

.
AT+ + 5 [0+ o)

Characterization of optimal treatment

Using Pontryagin Maximum Principle, an optimal treatment is at every

time t :
0

C(t) = ¢ Crax
0 < C(s,r) < Crax

@ Metronomic treatment can refer to a singular arc of C

@ Could this problem generate singular arcs?
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Numerical results

Objective

Minimizing the cost for regular cycling treatments :
No drug — Metronomic treatment — Maximum Tolerated Dose

Cycle with a metronomic halt MTD cycle
T T T T T T T T T
0.8| |— sensible i 0.8 —— sensible
—— resistant —— resistant
---  total ---  total
0.6 [-| — treatment B 0.6 —— treatment |
0.4 B 0.4 N
0.2 N . “, B 0.2 —| -‘ N
Il Il Il Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 0 20 40 60 80 100

time time



© Conclusion




Conclusion

Direct results and applications
@ An extensive study of constant treatments
@ Proposition of a “stabilization” strategy
© MTD versus Metronomics



Conclusion

Direct results and applications
@ An extensive study of constant treatments
@ Proposition of a “stabilization” strategy
@ MTD versus Metronomics
Ongoing studies : the biological side
@ Explain the action of sensible cells on the resistant
@ Calibrate the model and validate it
© Test the optimum we propose



Conclusion

Direct results and applications
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Ongoing studies : the biological side
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© Test the optimum we propose

Ongoing studies : the maths side
@ Take into account toxicity
@ Spatial propagation

© Works on numerical optimization



Conclusion

Thank you for your attention



On a singular arc

The system on a singular arc becomes
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