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Intracellular Pathways
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Transcription Factors: Gene regulatory networks

Transcription factors are proteins that bind to specific DNA sequences

Control flow of genetic information from DNA to RNA (transcription)

Can either activate/promote or repress/suppress
(upregulation/downregulation)
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Gene regulatory networks: Negative Feedback Loops

Negative feedback loops are found in a variety of signalling pathways

Examples include Hes1, p53, NF-κB, ERK, cAMP, Heat Shock
Proteins (HSP)

Experimental data reveals these pathways can give rise to oscillatory
dynamics
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Gene regulatory networks: Negative feedback loops

A generic negative feedback loop: species x produces y which then inhibits
x, in turn reducing levels of y. . .
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Hes1 Negative Feedback Loop
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Hes1 - Experimental data: Hirata et al. (2002)
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The Hes1 Transcription Factor

m - mRNA; p - protein:

∂m

∂t
=

αm
1 + (p/p̂)h

− µmm, (1)

∂p

∂t
= αpm− µpp, (2)

⇒ No oscillations
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The Hes1 Transcription Factor

m - mRNA; p - protein:

∂m

∂t
= αmf(p)− µmm, (3)

∂p

∂t
= αpm− µpp, (4)

Bendixson’s Negative Criterion ⇒ no oscillations for any f(p)

∂m

∂t
= αmf(p− τ)− µmm, (5)

∂p

∂t
= αpm− µpp. (6)
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Hes1 Spatial Model
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Hes1 Mathematical Model

∂[mn]

∂t
= Dmn∇2[mn] +

αh
m

1 + ([pn]/p̂)h
− µm[mn], (7)

∂[mc]

∂t
= Dmc

∇2[mc]− µm[mc], (8)

∂[pc]

∂t
= Dpc∇2[pc] + αp[mc]− µp[pc], (9)

∂[pn]

∂t
= Dpn∇2[pn]− µp[pn]. (10)
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Hes1 Mathematical Model: Simulation Results
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Hes1 Spatial Stochastic Model

µp

αm

Pf Po

k1

k2

αm/γ

mRNA

αp

φ

φprotein

µm

URDME [ Unstructured-mesh, Reaction-Diffusion Master Equation ]
spatial Gillespie algorithm
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Hes1 Spatial Stochastic Model

Pf + protein
k1−⇀↽−
k2

Po, (promoter, xm, nucleus)

Pf
αm−−−→ mRNA, (promoter, xm, nucleus)

Po
αm/γ−−−−−→ mRNA, (promoter, xm, nucleus)

mRNA
αp−−→ mRNA + protein, (cytoplasm,Ωc)

mRNA
µm−−−→ φ, (entire cell,Ω)

protein
µp−−→ φ, (entire cell,Ω)

proteini
D/h2

−−−−→ proteini+1, (entire cell,Ω)

mRNAi
D/h2

−−−−→ mRNAi+1, (entire cell,Ω)

proteini
D/h2

−−−−→ proteini−1, (entire cell,Ω)

mRNAi
D/h2

−−−−→ mRNAi−1, (entire cell,Ω)
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Hes1: Experimental Data/Simulation Results

Experimental data from Kobayashi et al.1 showing Hes1 protein levels in murine
embryonic stem cells.

1Kobayashi et al. (2009) The cyclic gene Hes1 contributes to diverse differentiation
responses of embryonic stem cells Genes Dev. 23, 1870 - 1875
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Hes1: Experimental Data/Simulation Results
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Corresponding simulation results from the spatial stochastic model1.

1Sturrock, Hellander, Matzavinos, Chaplain (2013) Spatial stochastic modelling of
the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic
stem cell differentiation. J. R. Soc. Interface 10, 20120988
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Computational Results: Summary

Spatial model(s) generate oscillatory dynamics without the need for a
delay
Simulations indicate that spatial movement of molecules is important -
no oscillations if diffusion too small or too large
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Simplified Hes1 Model

1xM0 l
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Simplified Hes1 Model

∂m

∂t
= D

∂2m

∂x2
+ αm f(p)δεxM (x)− µmm in (0, T )× (0, 1),

∂p

∂t
= D

∂2p

∂x2
+ αp g(x)m− µp p in (0, T )× (0, 1),

∂m(t, 0)

∂x
=
∂m(t, 1)

∂x
= 0,

∂p(t, 0)

∂x
=
∂p(t, 1)

∂x
= 0 in (0, T ),

m(0, x) = m0(x), p(0, x) = p0(x) in (0, 1) ,
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Simplified Model

f(p) = 1/(1 + ph), with h ≥ 2

δεxM denotes the Dirac approximation of the δ-distribution located at xM ,
with ε > 0 a small parameter and δεxM has compact support i.e.
δεxM (x) = 1

2ε(1 + cos(π(x− xM )/ε)) for |x− xM | < ε and δεxM (x) = 0 for
|x− xM | ≥ ε

g(x) =


0, if x < l ,

1, if x ≥ l ,

Mark Chaplain GRN Modelling Będlewo 12th June 2015 22 / 45



Computational Results
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Computational Results
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Computational Results
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Computational Results: Summary

There is a stationary solution, stable for small values of the diffusion
coefficient D, which becomes unstable for D ≥ Dc

1,ε, with
Dc

1,ε ≈ 3.117× 10−4, and again stable for D > Dc
2,ε, where

Dc
2,ε ≈ 7.885× 10−3. For diffusion coefficients between the two critical

values, i.e. D ∈ [Dc
1,ε, D

c
2,ε], numerical simulations show the existence of

stable periodic solutions.

Mark Chaplain GRN Modelling Będlewo 12th June 2015 27 / 45



Simplified Model: Steady States

First we examine the stationary solutions u∗ε = (m∗ε, p
∗
ε)
T of the system

satisfying the following one-dimensional boundary-value problem:

D
d2m∗ε
dx2

− µmm∗ε + αm f(p∗ε) δ
ε
xM

(x) = 0 in (0, 1) ,

D
d2p∗ε
dx2

− µp p∗ε + αp g(x)m∗ε = 0 in (0, 1) ,

dm∗ε(0)

dx
=
dm∗ε(1)

dx
= 0,

dp∗ε(0)

dx
=
dp∗ε(1)

dx
= 0 .
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Simplified Model: Steady States

For very small diffusion coefficients D � 1, in the zero-order approximation
we obtain:

0 = αm f(p∗ε)δ
ε
xM

(x)− µmm∗ε , 0 = αp g(x)m∗ε − µp p∗ε in (0, 1) .

Since g(x) = 0 for x ∈ [0, l), the second equation yields that p∗ε(x,D) = 0
in [0, l) and thus m∗ε(x,D) = αm

µm
δεxM (x) in [0, 1]. Using the fact that

xM ∈ (0, l) we obtain for sufficiently small ε > 0 that m∗ε(x,D) = 0 for
x ∈ [l, 1] and thus p∗ε(x,D) = 0 in [0, 1].
Therefore for very small D we have localisation of mRNA concentration
around xM , whereas the concentration of protein is approximately zero
everywhere in [0, 1].
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Simplified Model: Steady States

For large diffusion coefficients, i.e. D � 1 and therefore 1/D � 1, we have

0 =
d2m∗ε
dx2

+
1

D

(
αm f(p∗ε)δ

ε
xM

(x)− µmm∗ε
)

in (0, 1) ,

0 =
d2p∗ε
dx2

+
1

D

(
αp g(x)m∗ε − µp p∗ε

)
in (0, 1) ,

dm∗ε
dx

(0) =
dm∗ε
dx

(1) = 0,
dp∗ε
dx

(0) =
dp∗ε
dx

(1) = 0 .

Thus m∗ε(x,D) ≈ constant and p∗ε(x,D) ≈ constant.
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Simplified Model: Steady States
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Simplified Model: Steady States

m∗ε(x,D) = αm

∫ 1

0
Gµm(x, y)f(p∗ε(y,D))δεxM (y) dy ,

p∗ε(x,D) = αmαp

∫ 1

0
g(z)Gµp(x, z)

∫ 1

0
Gµm(z, y)f(p∗ε(y,D))δεxM (y) dy dz,
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Simplified Model: Steady States

Gµj (y, x) =


1

(µjD)1/2 sinh(θj)
cosh(θj y) cosh(θj (1− x)), 0 < y < x < 1

1

(µjD)1/2 sinh(θj)
cosh(θj (1− y)) cosh(θj x), 0 < x < y < 1

with θj = (µj/D)1/2, for j = m, p, the Green’s function satisfying the
boundary-value problem

DGyy − µjG = −δx in (0, 1), Gy(0, x) = Gy(1, x) = 0.
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Simplified Model: Steady States

m∗0(x,D) = αmGµm(x, xM )f(p∗0(xM , D)),

p∗0(x,D) = αmαpf(p∗0(xM , D))

∫ 1

0
g(y)Gµp(x, y)Gµm(y, xM ) dy,

Since xM < l and g(y) = 0 for 0 ≤ y < l, we have

Gµm(y, xM ) =
1

(µmD)1/2 sinh(θm)
cosh(θm(1− y)) cosh(θmxM ),

xM < y < 1,, where θm = (µm/D)1/2
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Simplified Model: Steady States

p∗0(xM , D) = f(p∗0(xM , D))
αpαm

2

cosh(θm xM ) cosh(θp xM )
√
µmµpD sinh(θm) sinh(θp)

×
[sinh((θp + θm)(1− l))

θp + θm
+

sinh((θp − θm)(1− l))
θp − θm

]
for θm 6= θp, and for θm = θp(= θ)

p∗0(xM , D) = f(p∗0(xM , D))
αpαm

4

cosh2(θ xM )

µD θ sinh2(θ)

×
[
2θ(1− l) + sinh(2θ(1− l))

]
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Simplified Model: Steady States

→ only one positive solution for all values of D ∈ [d1, d2].

Thus, since m∗0(x,D) and p∗0(x,D) are uniquely defined by p∗0(xM , D), for
every D ∈ [d1, d2] we have a unique positive solution of the stationary
problem with ε = 0. Then the strong convergence of m∗ε → m∗0, p

∗
ε → p∗0

as ε→ 0 in C([0, 1]) and the fact that nonnegative steady states (m∗ε, p
∗
ε)
T

are isolated imply the uniqueness of the positive steady state of the
time-dependent problem for small ε > 0.
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Linearised Stability Analysis

∂m

∂t
= D

∂2m

∂x2
+ αm f(p)δεxM (x)− µmm in (0, T )× (0, 1),

∂p

∂t
= D

∂2p

∂x2
+ αp g(x)m− µp p in (0, T )× (0, 1),

∂m(t, 0)

∂x
=
∂m(t, 1)

∂x
= 0,

∂p(t, 0)

∂x
=
∂p(t, 1)

∂x
= 0 in (0, T ),

m(0, x) = m0(x), p(0, x) = p0(x) in (0, 1) ,
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Linearised Stability Analysis

m = m∗ε + εm̄ε

p = p∗ε + εp̄ε
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Linearised Stability Analysis

λm̄ε = Dm̄ε
xx + αmf

′(p∗ε(x,D)) δεxM (x) p̄ε − µmm̄ε in (0, 1),

λp̄ε = Dp̄εxx + αpg(x)m̄ε − µpp̄ε in (0, 1),

m̄ε
x(0) = m̄ε

x(1) = 0, p̄εx(0) = p̄εx(1) = 0,

or in operator form
Awε = λwε,

where wε = (m̄ε, p̄ε)T and A = A0 +A1
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Linearised Stability Analysis

A0 =

D d2

dx2
− µm 0

0 D
d2

dx2
− µp



A1 =

(
0 αmf

′(p∗ε(x,D)) δεxM (x)
αpg(x) 0

)

Now examine the eigenvalues of A . . .
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Hopf Bifurcation

Theorem

For ε > 0 small there exist two critical values of the parameter D, i.e. Dc
1,ε

and Dc
2,ε, for which a Hopf bifurcation occurs in the model.

Dancer, E. N. (1993) On uniqueness and stability for solutions of singularly
perturbed predator-prey type equations with diffusion.
J. Diff. Equations 102, 1-32.
(+ Dr. Mariya Ptashnyk)
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Hopf Bifurcation

Theorem
At both critical values of the bifurcation parameter, Dc

1,ε and D
c
2,ε, a

supercritical Hopf bifurcation occurs in the system and the family of
periodic orbits bifurcating from the stationary solution at each Hopf
bifurcation point is stable.

(techniques from weakly nonlinear analysis and the central manifold theory)
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Conclusion

spatial movement of the molecules alone
is sufficient to cause the oscillations2

⇒ importance of modelling transcription factor systems
where negative feedback loops are involved

using explicitly spatial models

2Chaplain, M.A.J., Ptashnyk, M., Sturrock, M. (2015) Hopf Bifurcation in a Gene
Regulatory Network Model: Molecular Movement Causes Oscillations.
Math. Mod. Meth. Appl. Sci. 25, 1179-1215. (Open Access)
http://www.worldscientific.com/doi/pdf/10.1142/S021820251550030X
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Future Work

Experimental data from Lahav et al.3

showing p53 and Mdm2 protein levels in individual cells.

3Lahav et al. (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells.
Nature Genetics 36, 147 - 150
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Future Work

Corresponding simulation results from a spatial stochastic p53 model.
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