
A Kinetic approach to Darwinian Dynamics

E. DE ANGELIS

Dipartimento di Scienze Matematiche

“Giuseppe Luigi Lagrange”

Politecnico di Torino - Italy

A Kinetic approach to Darwinian Dynamics – p. 1/60



Index

Part I.

The Complexity Features of Living Systems

Evolutionary Dynamics

Cancer Immunoediting

Part II. On the Representation of the System

Part III. Qualitative Analysis

Part IV. Emerging Behaviors

Part V. Further improvements and research perspectives

A Kinetic approach to Darwinian Dynamics – p. 2/60



Part I - The Complexity Features of Living Systems

From Wikipedia, the free encyclopedia:

Complex systems present problems both in mathematical modelling

and philosophical foundations.

The study of complex systems represents a new approach to science

that investigates how relationships between parts give rise to the

collective behaviors of a system and how the system interacts and

forms relationships with its environment.

....

The key problems of complex systems are difficulties with their formal

modelling and simulation. From such a perspective, in different research

contexts complex systems are defined on the basis of their different

attributes.
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Part I - The Complexity Features of Living Systems

N.Bellomo, H. Berestycki, F. Brezzi, and J.P. Nadal, Mathematics and

Complexity in Life and Human Sciences, Mathematical Models and

Methods in Applied Sciences, 2010.

N.Bellomo, Modelling Complex Living Systems. A Kinetic Theory and

Stochastic Game Approach, (Birkhauser-Springer, Boston, 2008).

N.N. Taleb, The Black Swan: The Impact of the Highly Improbable, 2007.

G. Jona Lasinio , La Matematica come Linguaggio delle Scienze della

Natura,

- Life represents and advanced stage of an evolutive and selective

process. It seems to me difficult understanding living entities without

considering their historical evolution. Population dynamics is based on a

rather primitive mathematical theory, on the other hand it should

explain the emergence of individual living entities by selection.
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Part I - The Complexity Features of Living Systems

Five Common Features and Sources of Complexity

1. Ability to express a strategy: Living entities are capable to

develop specific strategies and organization abilities that depend on

the state of the surrounding environment.

2. Heterogeneity: The ability to express a strategy is not the same for

all entities.

3. Learning ability: Living systems receive inputs from their

environments and have the ability to learn from past experience.

4. Interactions: Interactions nonlinearly additive and involve

immediate neighbors, but in some cases also distant particles.

5. Darwinian selection and time as a key variable: All living

systems are evolutionary. For instance birth processes can generate

individuals more fitted to the environment, who in turn generate new

individuals again more fitted to the outer environment.
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Part I - The Complexity Features of Living Systems

Emerging Behaviors and Model Validation

i) Models should be derived within mathematical structures suitable to

include the aforesaid common features of living, hence complex,

systems;

ii) The first step toward the validation of models consists in verifying that

they describe quantitative results delivered in quasi steady states

(corresponding to experiments) as an output of the dynamics at the

micro-scale, without artificially inserting them into the model;

iii) The second step toward the validation of models consists in verifying

that they describe, at least at a qualitative level, emerging collective

behaviors observed in reality.
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Evolutionary Dynamics

The tentative to link

cancer modeling to evolutionary biology

is one of the most challenging frontiers of the

mathematical biology at the moment.

Populations of Reproducing Individuals Evolve

Genes, cells, ideas change over time but they do not

evolve
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Main Ingredients of Evolutionary Dynamics

Reproduction

Selection

Mutation

Random Drift

Spatial Movement
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Main Ingredients of Evolutionary Dynamics

Reproduction:

to make copies of themselves

Selection:

different types of individuals compete each other -

the final output is a choice

Mutation:

to generate different types that can be evaluated in

the selection process (biological novelty and diversity)
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Selection:

selection operates whenever different types of individuals

reproduce at different rates

Mutation:

mutations are errors during reproduction - they arises when

reproduction is not perfectly accurate
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Fitness Landscape

Genotype of an organism: is the genomic sequence of the organism

Phenotype of an organism: is given by its shape, behavior, performance

and any kind of ecological interaction

It determines the fitness (i.e. the reproduction rate) of the organism

There is a mapping from genotype to phenotype

There is another mapping from phenotype to fitness

The fitness landscape is a convolution of these two mappings
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Evolutionary Game Theory

Game Theory: mathematical theory to study human behavior in

strategic and economic decisions

Interaction between two players

how to maximize the payoff in a game given that no one knows what

the other will do - rationality

Evolutionaty Game Theory: individuals have fixed strategies and they

interact randomly with other individuals - no rationality
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Evolutionary Game Theory

The payoff is interpreted as fitness

Success in the game is translated into reproductive success

Strategies that do well reproduce faster

Strategies that do poorly are outcompeted:

natural selection
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Cooperation (prisoner’s dilemma)

Evolutionary progress often requires the cooperation of simpler parts

that are already available

Ex: replicating molecules had to cooperate to form the first cells

Cooperation: the donor pays a cost and the recipient gets a benefit

In evolutionary biology, cost and benefit are measured in terms of

reproductive success

Open problem: how natural selection can lead from competition to

cooperation

Natural selection choose defection: specific mechanisms are needed

to favor cooperation
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Finite populations

Stocastic formulation to describe:

- neutral drift: in a finite population with several different types, without

mutations, eventually all but one type will be extinct

and

- neutral evolution: Evolutionary biologists typically distinguish two main

types of natural selection: purifying selection, which acts to eliminate

deleterious mutations; and positive (Darwinian) selection, which favors

advantageous mutations. Positive selection can, in turn, be further

subdivided into directional selection, which tends toward fixation of an

advantageous allele, and balancing selection, which maintains a

polymorphism. The neutral theory of molecular evolution predicts that

purifying selection is ubiquitous, but that both forms of positive selection

are rare, whereas not denying the importance of positive selection in

the origin of adaptations.
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Evolutionary dynamics of cancer

- Cancer is a disease of multicellular organism

- Cancer is a breakdown of cellular cooperation

- Cells continuously receive signals from other cells telling them that they

are doing all right

- If these signal fail to arrive, then the default program for a cell is to

commit suicide

- Apoptosis (programmed death) is d defense mechanism against

cancer

- Cancer progression can be seen as a destructive evolution

- Mutation: any genetic modification in the differentiated cells
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Evolutionary dynamics of cancer

- Cancer results if the equilibrium between cell birth and death is shifted

toward uncontrolled proliferation

- During cell division there is a small probabilty that a mistake will be

made during DNA replication

- The mutation might confer a fitness advantage, a fitness disadvantage

or might not change the reproductive rate :

all of these mutations can represent steps towards cancer and are

therefore disadvantageous for the organism
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Cancer Immunoediting

The immune system plays at least three distinct roles in preventing

cancer:

i) It protects the host against viral infection and hence suppresses

virus-induced tumors;

(ii) it prevents the establishment of an inflammatory environment that

facilitates tumorigenesis by eliminating pathogens and by prompt

resolution of inflammation;

(iii) it eliminates tumor cells in certain tissues because nascent

transformed cells often co-express ligands for activating receptors on

innate immune cells and tumor antigens that are recognized by

immune receptors on lymphocytes of the adaptive immune system.

Cancer cells express antigens that differentiate them from their

nontransformed counterparts
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The Cancer Immunoediting Hypothesis

The cancer immunoediting process, in its most complex embodiment,

proceeds sequentially through three distinct phases

- elimination

- equilibrium

- escape
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Elimination

The elimination phase is best described as an updated version of

cancer immunosurveillance:

the innate and adaptive immune systems work together to detect the

presence of a developing tumor and destroy it before it becomes

clinically apparent

coordinated and balanced activation of both innate and adaptive

immunity is needed to protect the host against a developing tumor

If tumor cell destruction goes to completion, the elimination phase

represents an endpoint of the cancer immunoediting process (but the

elimination phase has not yet been directly observed in vivo)

the immune components required for effective elimination of any given

tumor are dependent on specific characteristics of the tumor, such as

how it originated (spontaneous versus carcinogen-induced), its

anatomic location, and its rate of growth
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Equilibrium

Rare tumor cell variants may survive the elimination phase and enter

the equilibrium phase:

- the adaptive immune system prevents tumor cell outgrowth and also

sculpts the immunogenicity of the tumor cells

- equilibrium can be the longest phase of the cancer immunoediting

process perhaps extending throughout the life of the host

- it may represent a second stable endpoint of cancer immunoediting

- in equilibrium, the immune system maintains residual tumor cells in a

functional state of dormancy, a term used to describe latent tumor cells

that may reside in patients for decades before eventually resuming

growth as either recurrent primary tumors or distant metastases

- equilibrium thus represents a type of tumor dormancy in which

outgrowth of occult tumors is specifically controlled by immunity
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Escape

Tumor cells that have acquired the ability to circumvent immune

recognition and/or destruction emerge as progressively growing, visible

tumors

progression from equilibrium to the escape phase can occur:

- because the tumor cell population changes in response to the

immune systems editing functions

and/or

- because the host immune system changes in response to increased

cancer-induced immunosuppression or immune system deterioration

The end result is the generation via a Darwinian selection process of

poorly immunogenic tumor cell variants that become invisible to the

immune system and thus acquire the capacity to grow progressively
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Escape

Alternatively, escape may result from the establishment of an

immunosuppressive state within the tumor microenvironment

Tumor cells can promote the development of such a state by producing

immunosuppressive cytokines such as vascular endothelial growth

factor (VEGF), transforming growth factorb (TGF-b), galectin, or

indoleamine 2,3-dioxygenase (IDO) and/or by recruiting regulatory

immune cells that function as the effectors of immunosuppression
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Part II - On the Representation of the System

Identification of the functional subsystems: tumor cells are distinguished

according to their progressive hallmarks, while the immune cells are

characterized by the capability to recognize specific hallmarks.

1. i = 1 labels epithelial cells, whose selected function is the ability,

supposed uniform for all cells, to feed proliferative phenomena.

Proliferative events can generate cells with the same phenotype,

but also cells with different phenotype toward the onset of cancer

cells. It is supposed that the organism is a source of epithelial cells,

so that their quantity can be regarded as constant in time;

2. i = 2 labels cells, generated by the first functional subsystem, that

have the ability to thrive in a chronically inflamed micrenvironment;

3. i = 3 denotes the functional subsystem of cells, generated by the

previous subsystem, that have the ability to evade the immune

recognition;

4. i = 4 refers to cells that have acquired the ability of suppressing the

immune reaction;
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Identification of the functional subsystems

1. i = 5 labels cells of the innate immune system which have the ability

to acquire, by a learning process, the capacity of contrasting the

development of cancer cells;

2. i = 6 labels cells generated by the innate immune system, which

have acquired the ability of contrasting the development of cancer

cells labelled by i = 2, i.e. cancer cells from the first hallmark;

3. i = 7 labels cells of the immune system generated from the previous

two subsystems, which have acquired the ability of contrasting the

development of cancer cells labelled by i = 3, i.e. cancer cells from

the second hallmark;

4. i = 8 labels cells of the immune system generated from the previous

three subsystems, which have acquired the ability of contrasting the

development of cancer cells labelled by i = 4, i.e. cancer cells from

the third hallmark.

Bellouquid A., De Angelis E., Knopoff D., From the Modeling of the Immune Hallmarks of Cancer to a Black Swan in Biology, M3AS,

23, (2013) 949–978.

E. De Angelis, On the mathematical theory of post-Darwinian mutations, selection, and evolution, M3AS, 24, (2014) 2723–2742.
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Part II - On the Representation of the System

Discrete representation of the activity variable:

Iu = {0 = u1, ..., uj , ..., um = 1},

with uj < uj+1, for j = 1, . . .m− 1. This variable is heterogeneously

distributed and we assume that increasing values of the activity

correspond to an increasing ability of the subsystem to express its

biological function.

The overall state of the system is described by the discrete probability

distribution function

fij = fij(t), i = 1, ..., 8 , j = 1, ...,m.(1)

The index i labels each subsystem, j labels the activity variable, and

fij(t) represents the number of active particles from functional

subsystem i that, at time t, have the state uj . Therefore,

ni[f ](t) =

m∑

j=1

fij(t), i = 1, ..., 8(2)
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Part II - On the Representation of the System

The balance equation can be summarized as follows:

dfij

dt
(t) = Cij [f ](t) + Pij [f ](t)−Dij [f ](t)− Lij [f ](t),(3)

for i = 1, ..., 8 and j = 1, ..., m, where Jij , Cij , Pij , Dij and Lij are suitable

operators acting over the whole set of probability densities. Specifically,

Cij [f ](t) is the net flux, at time t, into the state uj of the functional

subsystem i, due to conservative interactions that only modify the

micro-state;

Pij [f ](t) is the gain, at time t, into the state uj of the functional

subsystem i, due to proliferative events;

Dij [f ](t) is the loss, at time t, in the state uj of the functional subsystem i,

due to destructive events;

Lij [f ](t) is the natural relaxation of the immune system at time t and in

the state uj of the functional subsystem i, to a given healthy state.
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Part II - On the Representation of the System

The terms appearing in the right-hand side of the evolution equation (3)

can now be detailed according to the following expressions:

Cij [f ] =
n∑

k=1

m∑

p=1

m∑

q=1

ηik[f ]B
pq

ik (j)[f ] fip fkq − fij

n∑

k=1

m∑

q=1

ηik[f ] fkq,(4)

Pij [f ] =

n∑

h=1

n∑

k=1

m∑

p=1

m∑

q=1

ηhk[f ]µ
pq

hk(ij)[f ] fhp fkq,(5)

Dij [f ] = fij

n∑

k=1

m∑

q=1

ηik[f ] ν
jq

ik [f ] fkq,(6)

for i = 1, ..., 8 and j = 1, ...,m, and

Lij [f ] = λ (fij − f
0
ij),(7)

for i = 5, . . . 8 and j = 1, ...,m, namely, in the natural relaxation terms of

the evolution equations for the populations of the immune system, we

have chosen as healthy state the initial value of the distributions, say f0
ij .
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Part II - On the Representation of the System

Denoting by the abbreviation hp-particle the meaning of particle

belonging to the h-th functional subsystem with state up:

• ηhk is the encounter rate between the hp-candidate particle with the

kq-field particle. It is assumed that it depends on the ability of

interacting cells to recognize each other based on the distance

between their states and distribution functions.
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• Bpq

ik (j) is the transition probability density that the ip-candidate particle

falls into the state j of the same functional subsystem after an

interaction with a kq-field particle

Figure 1: Dynamics of conservative interactions. A candidate particle

from sybsystem h with state up can experiment a conservative interaction

with a field particle from subsystem k. The output of the interaction can

be up−1, up or up+1, depending on the kind of interaction the two are

undergoing.
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• µ
pq

hk(ij) models the net proliferation rate into the ij-state, due to

interactions, occurring with rate ηhk, between the hp-candidate particle

the kq-field particle.

Figure 2: Dynamics of proliferative interactions. A candidate particle

(mother cell) of functional subsystem h, by interacting with a field parti-

cle from population k, can proliferate a daughter cell, belonging either

to the same functional subsystem with same state, or eventually to the

following functional subsystem with the lowest activity value.
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Interactions can induce net proliferative events, which may generate,

although with small probability, a daughter cell that presents genetic

modifications with respect to the mother cell.

In some cases, these different cells represent the first mutation toward

the onset of cancer cells. If these cells have the ability to overcome the

immune defence, then further mutations can occur toward progression

and hallmarks of cancer.

The modeling approach is based on the idea that these mutations

occur with higher probability when progression increases. The general

framework is that of mutations and Darwinian selection.
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• ν
jq

ik models the net destruction rate into the ij-state, due to

interactions, occurring with rate ηik between the ij-test particle and the

kq-field particle. Interactions can induce net destructive events in the

sense that the immune system has the ability to kill a cancer cell.

Figure 3: Dynamics of destructive interactions. A candidate particle from

functional subsystem h with state up, interacting with a field particle from

population k with state uq, figure (a), can undergo a destructive action

which occurs within the same state of the candidate particle, figure (b).
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Part II - Modeling Strategy

• Encounter rate. The modeling of the encounter rate ηhk needs to

take into account the specific functions and expressions of cells, also

related to a learning process. Only encounters which lead to

progression, mutations, and proliferation will be considered, being

referred to a (positive) value η0. This dimensionless parameter, small with

respect to one, corresponds to interactions within the subsystem of

epithelial cells, and can be included into the time scale. Taking into

account the dependence of the encounter rate on the distance

between the distribution functions, as already mentioned in section 2.3,

we first introduce

Ψhk[f ] =





exp

(
−τ

||fh − fk||

||fh||+ ||fk||

)
, ||fh||, ||fk|| 6= 0, τ > 0,

0, ||fh|| = ||fk|| = 0,

(8)

for each pair of functional subsystems (h, k).
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Part II - Modeling Strategy

- Encounter rate of functional subsystems h = 1, 2, 3, 4 with k = 1. The

rate of encounters between tumor and epithelial cells, increases

with the hallmark h, as progressive hallmarks correspond to

increasing activation to search nutrients for increasing proliferation:

ηh1 = η0 hΨh1[f ], ∀ h = 1, 2, 3, 4.(9)

On the other hand, it is assumed to be equal to zero for encounters

involving only cancer cells: ηhk = 0, ∀ h, k = 2, 3, 4.

- Encounter rate of functional subsystems h = 5, 6, 7, 8 with k = 1, 2, 3, 4.

Immune cells have the ability to identify cancer cells only if they

have acquired, after a learning process, this specific ability. The

following assumption is proposed:

ηhk = σ η0 Ψhk[f ], σ > 0,(10)

for each pair

(h, k) = (5, 2), (6, 2), (6, 3), (7, 2), (7, 3), (7, 4), (8, 2), (8, 3), (8, 4).
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Part II - Modeling Strategy

• Transition probability density. Progression phenomena refer to

an increasing activity within the same functional subsystem. This

dynamics is modeled by the terms Bpq

ik (j). Only interactions with

encounter rate different from zero are considered:

- Interactions involving functional subsystems h = 1, 2, 3, 4 with k = 1.

Epithelial and cancer cells can increase their state only after an

interaction with epithelial cells. Probability of transition is assumed to

decrease with the activity state of the candidate particle:

Bpq

h1(j) =





α (1− up), j = p+ 1, α > 0,

1− α (1− up), j = p,

0, otherwise.

(11)
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Part II - Modeling Strategy

- Interactions of functional subsystem h = 1 with k = 2, 3, 4. Epithelial

cells are assumed to feed progression of cancer cells without

changing their own state: Bpq

1k(p) = 1.

- Interactions of functional subsystems h = 5, 6, 7, 8 with k = 2, 3, 4.

Immune cells acquire progressively the ability to identify functional

subsystems of tumor cells. As a consequence, immune cells may

increase their state and the probability of progression decreases

with increasing p-th state:

Bpq
52(j) = Bpq

62(j) = Bpq
73(j) = Bpq

84(j) =





α (1− up), j = p+ 1,

1− α (1− up), j = p,

0, otherwise.

(12)

- Interactions between cancer cells from h = 2, 3, 4 with k = 5, 6, 7, 8. It

is assumed that these types of interactions do not induce biological

events to cancer cells.
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Part II - Modeling Strategy

• Mutation events. These are rare events, related to the rate ηhk,

where generation of a daughter cell occurs in a functional subsystem

different from that of the mother cells. This event is modeled by the term

µ
pq

hk(ij), where i = h+ 1 with output into the state j = 1:

- Mutations from cancer subsystems h = 1, 2, 3. These are related to

encounters with the first functional subsystem k = 1:

µ
pq

h1(ij) =





ε1 up, i = h+ 1, j = 1, ε1 > 0,

0, otherwise.
(13)
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Part III - Modeling Strategy

- Mutations from immune subsystems h = 5, 6, 7. These are related to

an increasing capability of the immune cells to recognize a specific

hallmark:

µ
pq
52(6j) =





ε26 up, j = 1, ε26 > 0,

0, otherwise.
(14)

µ
pq
63(7j) =





ε27 up, j = 1, ε27 > 0,

0, otherwise.
(15)

µ
pq
74(8j) =





ε28 up, j = 1, ε28 > 0,

0, otherwise.
(16)
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Part II - Modeling Strategy

• Proliferative events. Proliferation occurs within the same functional

subsystem with rate ηhk being modeled by the term µ
pq

hk(ij), where i = h

and j = p:

- Proliferation in cancer subsystems h = 2, 3, 4. Proliferation increases

with the hallmarks of cancer cells, due to the resulting deregulated

proliferation program which is an acquired capability of tumor cells:

µ
pq

h1(hj) =





β1 hup, j = p, β1 > 0

0, otherwise.
(17)

- Proliferation in immune cells subsystems h = 6, 7, 8. Immune cells

proliferate due to encounters with cells up to the identified tumor

subsystems:

µ
pq

hk(hj) =





β2, j = p, β2 > 0

0, otherwise.
(18)

for each pair (h, k) = (6, 2), (7, 2), (7, 3), (8, 2), (8, 3), (8, 4).
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Part III - Modeling Strategy

• Destruction rate. Destructive terms concern only cancer and

immune cells. Immune cells have the ability to suppress cancer cells

that are identified by them. It is assumed that this ability increases with

increasing activity of immune cells:

ν
pq
26 = ν

pq
27 = ν

pq
28 = ν

pq
37 = ν

pq
38 = ν

pq
48 = γ uq, γ > 0.(19)

Encounter rates are symmetric: ηhk = ηkh, ∀ h, k, p, q. However, the other

interaction terms do not have this property due to lack of reversibility.
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Part III - Modeling Strategy

The biological meaning of the parameters introduced in the model are

here summarized: η0, σ, τ : refer to interaction rates

α: is a parameter of the probability density in conservative progressions

ε1, ε26, ε27, ε28: model the mutation rate for cancer and immune cells

β1, β2: model the proliferation rate for cancer and immune cells

γ: refers to suppression rate

λ: refers to the relaxation of the immune system
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Part II - Qualitative Analysis

Initial value problem: 



dfij(t)

dt
= Jij [f ](t),

fij(0) = f0
ij ,

(20)

where Jij [f ](t) = Cij [f ](t) + Pij [f ](t)−Dij [f ](t)− Lij [f ](t), for i = 1, ..., n

and j = 1, ..., m, and f = {fij},

Mnm be the set of real n×m matrixes with the 1-norm

‖ f ‖1=

n∑

i=1

m∑

j=1

|fij |, f = {fij} ∈ Mnm.(21)

X = Cb([0, +∞); Mnm) be the linear space of the matrix-valued

bounded and continuous functions f = f(t) : [0, +∞) → Mnm equipped

with the infinity norm ‖ f ‖∞= supt∈[0,+∞) ‖ f ‖1 .

(X, ‖ · ‖∞) is a real Banach space
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Part II - Qualitative Analysis

Assumption H.1. In section 2.3, Bpq

ik (j) is defined as a transition

probability density, and this implies that is such that

m∑

j=1

Bpq

ik (j)[f ] = 1, ∀i, k = 1, ..., n , ∀p, q = 1, ..., m.

Assumption H.2. There exists Cη > 0 such that

0 < ηik[f ] ≤ Cη, ∀i, k = 1, ..., n.

Assumption H.3. Both the encounter rate ηik[f ] and the transition

probability Bpq

ik (j)[f ] satisfies that there exist constants L1, L2 such that:

| ηik[f ]− ηik[g] |≤ L1
‖ gi − fi ‖ + ‖ gk − fk ‖

‖ gi ‖
, ∀f, g ∈ Mnm,(22)

and

| Bpq

ik (j)[f ]− Bpq

ik (j)[g] |≤ L2
‖ gi − fi ‖ + ‖ gk − fk ‖

‖ gi ‖
, ∀f, g ∈ Mnm,(23)

for all i, k = 1, ....., n and j, p, q = 1, ....m.
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Part III - Qualitative Analysis

Theorem:

Let Assumptions H.1, H.2, H.3 hold, and let f0 ∈ Mnm.

Then there exists T such that if t ≤ T , there exists a strictly positive

constant a such that the problem (20) admits a unique non-negative

global solution f ∈ XT satisfying the following estimate:

‖ f(t) ‖1≤ a ‖ f0 ‖1, t ∈ [0, T ].(24)

The smallness condition on the initial condition can be avoided by using

the parameter λ large enough and the result can be stated as follows:
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Part III - Qualitative Analysis

Theorem:

Let Assumptions H.1, H.2, H.3 hold, and let f0 ∈ Mnm. Then there exists λ0

such that if λ ≥ λ0, there exists a strictly positive constant a such that the

problem (20) admits a unique non-negative global solution f ∈ X

satisfying the following estimate:

‖ f(t) ‖1≤ a ‖ f0 ‖1, t ∈ (0,∞).(25)
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Part III - Qualitative Analysis

Coming back to our model, i.e. Eq.s (3)-(7) and n = 8, due to the fact

that we have Lij [f ](t) = 0 for i = 1, . . . , 4 and ∀j = 1, ..., m, we obtain the

following local existence theorem:

Let Assumptions H.1, H.2, H.3 hold, and let f0 ∈ Mnm. Then there exists T

such that if t ≤ T , there exists a strictly positive constant a such that the

problem (20) admits a unique non-negative global solution f ∈ XT

satisfying the following estimate:

‖ f(t) ‖1≤ a ‖ f0 ‖1, t ∈ [0, T ].(26)
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Part IV - Emerging Behaviors

A preliminary numerical analysis:

ε1: model the mutation rate for cancer subsystems h = 1, 2, 3 related to

encounters with the first functional subsystem k = 1

ε28: model the mutation rate for immune cells from h=7 to h=8

if there exists a critical value εc = ε1
ε28

such that for ε < εc the immune

system has the ability to prevent the growth of cancer cells, namely

cells of the fourth functional subsystem, while for ε > εc the opposite

behavior is depicted.

The objective of the simulations aims at depicting the following

emerging behaviors: cancer cells cannot be suppressed for low values

of the said parameter. Therefore these will end up to aggregate into

compact multicellular structures, while for high values immune cells

have the ability to learn the presence of cancer cells, which are

progressively depleted.
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Part IV - Emerging Behaviors

(a) (b)

t

n 4

t

n 4

t

n 4

t

n 4
(c) (d)

Evolution of the density of functional subsystem 4 for different (increasing) values

of parameter ε28: number density of cancer cells of the last hallmark have an

increasing behavior (a), as the immune cell is not able to deplete them, while an

asymptotic value is reached for increasing value (c): a latent situation is

reached. Finally, for greater values cancer cells are suppressed (d).
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Part IV - Emerging Behaviors

t

n
2

t

n
3

Number density of preceding hallmarks after a temporary increase

decay due to the selection of cells of the highest hallmark.

The rare event is the growth of cancer cells, which is generated by a

mutation into the highest hallmarks where the immune cells have not

anymore the ability to identify the presence of cancer cells and

suppress them. As we have seen, it is a Darwinian selective process ruled

by cellular properties, and specifically on the mutation rate. Hence the

rare event is related to a mutation that is already a rare event which

can cause disaster for the vertebrate carrier of such mutation.
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Living entities/outer environment

A further development:

an analysis of the interactions between living entities and the external

environment surrounding them

More fitted entities can proliferate and expand, while less fitted ones

may slowly disappear

The dynamics generates the extinction of some populations and the

survival of others. In some cases, survival might even mean an excess of

proliferation, as occurs in genetic diseases

Interactions can, in some cases, also modify the evolution of the

environment: it is expected that some of the said new subsystems may

disappear due to their limited adaptability to the other subsystems,

while some of them may develop by taking advantage of the others.
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Living entities/outer environment

Referring to the phenomenological description presented before, let us

consider a large system of individuals called active particles with their

individual state called activity:

this corresponds to genotype-phenotype expression.

The individuals corresponding to the same expressions are assembled

into functional subsystems, where the common tract is viewed as a

functional expression that aims at survivance.

The activity within the population is the micro-state, which is

heterogeneously distributed, while the description of the overall state of

the system is delivered by suitable distribution functions over the said

micro-state.
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Living entities/outer environment

Representation of the inner system:

The inner system is constituted by active particles and is decomposed

into functional subsystems labeled by the subscripts i = 1, . . . , n, each

related to a different activity corresponding to different phenotype

expressions: fi

Representation of the outer system:

The outer system is constituted by agents, called active agents, and is

decomposed into agents functional subsystems labeled by the

subscript j = 1, . . . , n, each identified by a different activity

corresponding to an ability to interact with the activity of each

functional subsystem of the inner system, for instance ability to acquiring

feeding and environmental well being: gj
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Living entities/outer environment

A formal mathematical structure defines the balance of the number of

active particles and agents in the elementary volume of the space of

the micro-state as follows:





∂tfi(t, u) = Ci[f ](t, u) + Pi[f ,g](t, u)− λi[fi](fi − f̃i)(t, u),

∂tgj(t, w) = Ce
j [g](t, w) + P e

j [g, f ](t, w)− λe
j [gj ](gj − g̃j)(t, w),

(27)

where Ci and Ce
j (Pi and P e

j ) model the net flux of particles that, due to

conservative (proliferative/destructive) interactions, fall into the

elementary volume [u, u+ du] and [w,w + dw] of each functional

subsystem of active particles and agents, respectively, while λi and λe
j

refer the natural decay of each functional subsystem toward a level

distribution.
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Living entities/outer environment

→ The micro-scale interactions are modeled by theoretical tools of

game theory: consensus, competition, learning, escaping

→ Interaction rules are generally governed by a distance between the

interacting particles or agents:

– models often assume that such a distance is constant in time or

evolves according to well prescribed rules

– recent studies on the dynamics of wealth distribution have proposed

models where the distance evolves in time related to competitions at

the macro-scale level

– this feature induces significant modifications of the emerging

behaviors foreseen by models

– therefore an additional analysis focused on its influence of Darwinian

dynamics is definitely worth to be studied
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Living entities/outer environment

An efficient way to investigate the predictive ability of models refers to

their ability to depict a variety of emerging behaviors, which can be

observed at a qualitative level

Some of the emerging behaviors can be classified as rare and not

predictable event: the need of including this type of investigation in

Darwinian dynamics is referring to the onset and development of

cancer cells, namely to their evolutionary features

An important focus refers to the detection of early signals

(early-warning signals for critical transitions), which allow to understand

when these specific events can appear in time
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What mathematical models should foresee

The validation of models of the dynamics of living, hence complex,

systems is based on their ability to predict emerging behaviors:

1. Starting from the dynamics of the inner and outer systems,

interactions should lead to modifications of the probability

distribution over the activity variable of each system.

2. New subsystems are generate by this interaction. The following

asymptotic behaviors should be foreseen:

i) Progressive suppression, might be after an initial growth, of the

subsystems which are not well fitted with respect to the environment;

ii) Asymptotic equilibrium with the environment such that the

number of individuals in each functional subsystem remains

constant.

3. Indefinite growth of the size (number) in one or more functional

subsystem.
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Here each behavior corresponds to a different population related to successive

mutations.

The ordinate reports the number density where in the first mutation the number

density can even tend to zero after an initial growth, after the second mutation

an asymptotic value is reached, while the third one shows a monotone growth.

The first and second mutation show the effect of the immune system, while the

third one shows that the immune system has lost its ability as mutated cells have

acquired the ability to escape the immune defence

t

n

 

 

3
2
1

A Kinetic approach to Darwinian Dynamics – p. 58/60



Here the dynamics when the outer environment can act, by means of specific,

therapeutical actions which improve the ability of immune cells to “learn” the

presence of mutated cancer cells. Then, the action of the immune system can

even deplete cells in advanced mutations

t

n

 

 

3
2
1

Figure 4: Evolution of a number density corresponding to successive mutations,

taking into account the outer environment.
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What is still missing ?

A complete multiscale analysis where the micro-scale, namely that of

cells selected for the modeling approach, is linked to the dynamics at

the lower molecular scale of cells as well as to the macro-scale of

tissues.

A research perspective:

aspects of Darwinian dynamics similar to those studied in the preceding

sections can be observed, and hence modeled, also in fields different

from those of biology such as economy and social sciences.

In fact, modern approaches aim at understanding the role of human

behaviors at the micro-scale on the overall dynamics of systems being

aware that individual, in some cases irrational, behaviors can induce

large deviations.
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