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Guidelines of the research

Mathematical modelling of complex living systems.
Many living beings and nonlinear interactions: the whole is more
than the sum of its parts.
Virtual laboratories: test hypothetical scenarios and enlighten
stylized facts and collective behaviors, emerging from the
complex interactions involved in the game.
Focus on evolutionary dynamics in biology and medicine.



Evolutionary dynamics

Evolution in ecology and selection at the cellular level.



Tumour heteogeneity

Intertumour heterogeneity: genetic and phenotypic variation are
observed between tumours of different tissue and cell types, as well
as between individuals with the same tumour type.
Intratumour heterogeneity: within a tumour, subclonal diversity may
be observed.
R. A. Burrell et alii, The causes and consequences of genetic
heterogeneity in cancer evolution, Nature 2013.



Clonal selection in tumours

Graphical representation of clonal evolution in AML (Acute Myeloid
Leukemia) from the primary tumour to relapse with the selection of
the resistant clones.
Li Ding et alii, Nature, 2012.



Cancer progression from an evolutionary perspective

Tumor progression and development is a complex evolutionary
process, see e.g. Merlo et alii (2006).
Diversity: aggregates heterogeneously composed of cells
carrying different phenotypic expressions or mutations.
Competition for space and resources (e.g. oxygen and
glucose) among healthy and cancer cells within the environment
defined by the surrounding tissues.
The fitness (i.e. the ability to survive and reproduce) of
neoplastic clones is shaped by different selective pressures that
can vary in different micro-environment.
Exposure to anti-cancer therapies and the predation by the
immune system leads to selection of cells expressing highly
resistant phenotypes.
Clonal evolution shapes to a Darwinian micro-evolution
generally selecting for increased proliferation and survival, and
might lead to invasion, metastasis and therapeutic resistance.
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Role of the immune system

”Conceptual progress in the last decade has added two
emerging hallmarks of potential generality to this
list-reprogramming of energy metabolism and evading immune
destruction.”
D. Hanahan and R. A. Weinberg, Cell, (2011).
”Mutated cells on their way to giving rise to a tumor have also to
learn how to thrive in a chronically inflamed microenvironment,
evade immune recognition, and suppress immune reactivity”.
F. Cavallo, C. De Giovanni, P. Nanni, G. Forni, and P.L. Lollini,
Cancer Immunol. Immunother., (2011).
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Some inspiring references

Cancer immunoediting: “The immune system has a dual role:
it can prevent tumor formation, and, at the same time, it also
functions to promote or select tumor variants with reduced
immunogenicity facilitating tumor escape from immune
destruction.”
G. P. Dunn et alii, Nature Immunology, (2002).

The selective recognition mechanisms and the learning process
of immune cells. Learning does not occur at individual (cell) level
while it is an emergent collective property of the immune
system as a whole resulting from promotion, through the clonal
expansion, of successful clones and as evolution of the
expressed repertoire with respect to potential one.



Immunotherapies

Immunotherapy and antigen-specific protocols to boost or
restore the ability of the immune system to fight cancer.
A propel cancer immunotherapy to the forefront of cancer
treatment in the immediate near future. See e.g. (Oncology
Meets Immunology: The Cancer-Immunity Cycle, D. S. Chen et
alii, Cell, 2013) and (Cancer immunotherapy comes of age, I.
Mellman et alii, Nature, 2011).
However, no durable clinical improvements. A possible
reason: cytotoxic T-cells die quickly, so that immune response is
not sustained and cancer eventually comes back.
Current research trends include cancer vaccines aimed at
inducing both tumor-specific effector T-cells, which can reduce
the tumor mass, and tumor-specific memory T-cells, which can
control tumor relapse providing the immune system with
“memory" (i.e., they quickly expand becoming activated T-cells
upon re-exposure to their cognate antigen).



Questions

Questions for the modelling:

Which evolutionary dynamics of cancer cells is driven by the
pressure of the immune system?
Can we explain intra-tumor heterogeneity in terms of cell
adaptation to local conditions?
Action of TCs over cancer cells, with particular reference to
recognition and learning processes?
How immunotherapy affects the evolutionary dynamics of
cancer cells?
Can we enhance the anti-cancer efficacy of T-cells by using
different types of immune boosters in combination?



Modeling approach and populations

Mathematical methods and framework developed at the mesoscopic
scale. Structured populations dynamics: the identical-individuals
assumption is too restrictive. See e.g. (Bellomo, Bianca, Delitala,
Physics of Life Reviews, 2009) and Perthame, Transport equations in
biology. Birkhuser (2007).

Population of cancer cells characterized by heterogeneous
antigenic expressions, structured by u ∈ U ⊂ R+: the antigenic
expression or briefly traits of cancer cells.
Population of activated T-cells structured by v ∈ V ⊆ U: those
antigens that T-cells can effectively attack. Briefly, traits of T-cells.
All cells are considered homogeneously mixed i.e., a
well-mixed sample and space effects are kept aside.
Action of immunotherapies aimed at boosting the proliferation
of activated T-cells and immune memory.



Densities

Density functions of cancer cells and T-cells with traits u and v
respectively:

fC = fC(t ,u) : [0,T ]×U → R+, fI = fI(t , v) : [0,T ]×V → R+.

Total densities computed as momentum:

%C(t) =
∫

U
fC(t ,u)du, %I(t) =

∫
V

fI(t , v)dv .

Infusion rates of therapeutic agents boosting clonal expansion
and immune memory at time t ∈ [0,T ]:

cP(t) ≥ 0 and cM(t) ≥ 0



Evolution equations

∂

∂t
fC(t ,u) = (κC − µC%C(t)) fC(t ,u)︸ ︷︷ ︸

cancer growth and cell competition

− fC(t ,u)
∫

V
ηθI (|u − v |)fI(t , v)dv︸ ︷︷ ︸

immune competition

∂

∂t
fI(t , v) =

[∫
U
ηθE (|u − v |)fC(t ,u)du + κPcP(t)

]
fI(t , v)︸ ︷︷ ︸

clonal expansion and boosting of T-cell proliferation

− µI

1 + µMcM(t)
%I(t)fI(t , v)︸ ︷︷ ︸

homeostatic regulation and
boosting of immune memory

Therapeutic agents: the dynamics of cP(t) and cM(t) are supposed
to be given.



Parameters of the model

Biological Phenomena Parameters
Tumor cell proliferation κC
Cancer competition for resurces µC
Immune competition θI

Homeostatic regulation µI

Selectivity clonal expansion θE

Boosting of T-cell proliferation κP

Boosting of immune memory µM



Computational analysis: Settings

Numerical simulations are performed in MATLAB. U = V := [0,1] and
implicit-explicit finite difference scheme with 400 points on the interval
[0,1]. Time domain: [0,T ], where T = 1200dt and dt = 0.1.

Selectivity of clonal expansion and immune competition:

ηθE (|u − v |) := e−θE |u−v |2 ηθI (|u − v |) := e−θI |u−v |2

Parameters set with an explorative aim to addres the above
mentrioned questions:

κC,P := 1, tumor cell proliferation and boosting of T-cell
proliferation.
µC,I := 0.5, cancer competition for resurces and homeostatic
regulation.
θE,I := 1000, selectivity clonal expansion and of immune
competition.
µM := 1, boosting of immune memory.



Parameter setting

cP and cM mimic different infusion schedules.
Initial conditions

fC(t = 0,u) = CCe−
(u−0.5)2

0.001 , fI(t = 0, v) = CIχV (v)

where χV is the characteristic function of the V set and
CC,I ∈ R+ such that

%C,I(t = 0) ≈ 1.

Cancer cell population is almost monomorphic at the beginning
of observations (i.e., most of the cancer cells are characterized
by the same antigenic expression), while the same number of
activated T-cells are found inside the system for each possible
antigenic expression of cancer cells.



Dynamics of cancer cells without immunotherapies
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“Branching process" involving activated T and cancer cells.
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cP,M (t) := 0. Evolution of fC (t, u) (left panel), fI (t, v) (center panel), %C (t) (right panel, solid line) and %I (t) (right panel, dashed line).



Clonal expansion leads to a proliferation of the T-cells that can
effectively recognize and attack the antigens mostly expressed
by the cancer cell population.
The selective pressure exerted by activated T-cells causes the
selection of those cancer cells that are actually able to evade
immune predation: tumor escape.
From the evolutionary perspective, immune competition
pushes the monomorphic cancer cell population to become, in
succession, dimorphic, trimorphic and then tetramorphic (i.e.,
most of the cells are characterized by two, three or four given
antigenic expressions, respectively).
The immune system may introduce an additional selective
pressure, which reinforces the selection for the most fitting,
and then most resistant, clones and promoting the growth of
tumor cell variants with increasing capacities to survive immune
attack. In one word: immune system can select for resistance.



These results are consistent with considerations drawn in some
previous works on the immunoediting, (G. P. Dunn et alii, 2002)
and more in general on the action of external pressures (Merlo et
al., 2006) or of targeted therapeutic agents e.g. (R. J. Gillies, D.
Verduzco, R. A. Gatenby, 2012).

The same pattern of evolution of cancer cells is followed by
T-cells with a certain delay, time required to adapt to the antigenic
distribution of cancer cells. fI(t , v) replicates after a delay time
the distribution of fC(t ,u) over U. This adaptation can be view as
a collective learning of the immune system as a whole resulting
from promotion, through the clonal expansion, of successful
clones, see also M. Delitala and T. Lorenzi, DCDS-b, 2013



Effects of boosters on cancer dynamics

Evolution of cancer cells
in presence of boosters of T-cell proliferation only,
in presence of boosters of immune memory only,
when therapeutic agents that boost T-cell proliferation and
immune memory are simultaneously delivered.

During simulations we choose periodic injections ω = 10π/T , with
three different delivered doses C ∈ {4,6,8}.



Effects of boosters of T-cell proliferation on cancer
dynamics
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Effects of boosters of immune memory on cancer
dynamics
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Boosters of T-cell proliferation allow only a temporary
reduction of the concentration of cancer cells and do not allow
the permanent eradication of cancer cells.
Boosters of immune memory leaves the qualitative dynamics
of the cancer cell density almost unaltered with respect to the
case without therapies and do not allow the permanent
eradication of cancer cells.



Joint action of boosters of T-cell proliferation and
immune memory
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If the two types of immune boosters under consideration are
used in combination, there exist certain doses that make
possible to push the cancer cell population toward extinction
(left bottom panel).
Concentration of cancer cells (left panels) is progressively
reduced and tumor relapse is progressively controlled as
long as the delivered doses are increased.
These results lead us to conclude that more effective
immunotherapy protocols can be designed using suitable
combinations of therapeutic agents that boost T-cell
proliferation and immune memory as well.



Immunotherapy: boosters of proliferation and immune
memory
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Time phases of the immune response
Expansion, contraction and memory in the immune response with
constant immunotherapy. See e.g. Kaech et alii, Nature Reviews
Immunology, 2002.

T. Lorenzi, R. H. Chisholm, A. Lorz, M. Melensi, M. Delitala.
Mathematical model reveals how regulating the three phases of T-cell
response can counteract immune evasion, preprint.



Time phases of the immune response
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Design therapeutic interventions to:
- Increase the number of antigen-specific T cells by acting on the

expansion phase;
- shorten the duration of the contraction phase to limit T-cell

death and stabilize as many T cells as possible inside the
long-lived memory reservoir.



Some perspectives

Design different immunotherapy protocols taking into account
the time phases of the immune response.
Sensitivity analysis and how some parameters of the model
can affect the dynamics of the solution.
Parametrize the model and development of ad-hoc experiments
designed to assign precise values to the model parameters and
test with some clinical terapeutical protocols.
Space dynamics, cell motility and dynamic evolutionary
landscapes.



Concluding remarks

The proposed modeling approach makes possible to take into
account proliferation and competition phenomena involving
tumor cells as well as tumor-immune interactions and the action
of therapeutical agents.
Simulations, developed with an exploratory aim, have been
addressed to provide insights into the phenomena that rule
immune response and therapeutical agents against cancer cells.
It has been highlighted how the evolutionary dynamics
viewpoint may give a further insight in the dynamic of the
system and eventually allow to obtain counter-intuitive results,
e.g. immune system may both antagonize and enhance tumor
development and progression.


