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Alzheimer’s Disease

Most common type of dementia

Neurons along with their connections are progressively
destroyed, leading to loss of cognitive function and
eventually death

Therapeutic intervention is most likely beneficial in early
stages

Mild Cognitive Impairment (MCI): transitional stage between
normal aging and development of dementia

Neuroimaging: powerful tool for studying changes in
Alzheimer’s Disease (AD) progression and therapeutic
efficacy in AD patients

Magnetic Resonance Imaging (MRI) scans are useful for
identifying features that can help predict which patients will
develop AD
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It's the only cause of death
in the top 10 in America that
CANNOT BE PREVENTED,
CURED OR SLOWED.

Alzheimer’s
disease is the
6TH LEADING
CAUSE OF DEATH
IN THE UNITED
STATES.

Alzheimer’s Facts
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ALMOST TWO THIRDS
of Americans with Alzheimer's
disease are women.

Only

45 %

of people with
ALZHEIMER'S

disease or their
caregivers report
BEING TOLD OF

THEIR DIAGNOSIS.

More than

90-

of people with the
four most common
types of CANCER
have been
TOLD OF THEIR
DIAGNOSIS.

SENIORS
dies with Alzheimer’s or
another dementia.

By 2050, these costs
could rise as high as
$1.1 TRILLION.

+

In 2015, Alzheimer's and
other dementias will cost the
nation $226 BILLION.



Alzheimer’s Disease Facts

e Nearly 36 million people have AD or a related dementia worldwide
(5.2 million Americans)

e More than 13 million Americans are expected to have AD by 2050

e AD and dementia is most common in Western Europe (then North
America), least prevalent in Sub-Saharan Africa

e 1in4 people with AD have been diagnosed

e Early-onset AD (5%) can develop in people as young as age 30

e ADis a growing epidemic worldwide and the only leading cause of
death that is still on the rise

e The cost of caring for AD patients in the US is estimated to be $220
billion per year (S605 billion worldwide, equivalent to 1% of the
entire world’s GDP)

e QOver 15 million Americans are unpaid caregivers for someone with
AD

e Typical life expectancy after an AD diagnosis if 4-8 years

(Alzheimer’s Association Facts and Figures, 2014)



MRI Data

Assumption: there are certain features in the brain images of
patients with AD

Main idea: we would like to discover these features to distinguish
brains of patients in early stages of AD from brains of healthy
patients

Goal: to find those low dimensional features based on the
observable high dimensional data

Challenges: noisy data, unknown model

Normal AD

Compliment of Scanning Department, St. Teresa's Hospital



Manifold Learning

Represent the data as points in a high dimensional space
The points lie on a low dimensional structure (manifold) that
is governed by latent factors
Traditional techniques:
— Laplacian eigenmaps [Belkin & Niyogi, 2003]
— Diffusion maps [Coifman & Lafon, 2005; Singer & Coifman,
2008]




Diffusion Maps

* Recorded high dimensional data that measures
brain activity and features

* We assume that for the problem of identifying
AD, there are a few brain activity factors that
distinguish AD brains from healthy brains

* Our goal is to find those controlling low
dimensional factors based on the observable
high dimensional data




Diffusion Maps

« Eigenfunctions of Markov matrices are used to
construct coordinates that generate efficient
representations of complex geometric structures

* Not only does diffusion mapping allow for
dimensionality reduction of the data, but this method
also provides pattern recognition so that specific
parts of the data may be analyzed more closely

 Diffusion maps: nonlinear and local, unlike Principal
Components Analysis (linear and global)

(Coifman, 2006)



General Outline

For each measurement in the set, we compute
the local histogram and covariance

Construct an NxN symmetric affinity matrix
(kernel) between the measurements

Normalize the kernel to obtain a Laplace
operator [Chung, 1997]

The leading eigenvectors from the spectral
decomposition represent the underlying
factors



Intrinsic Modeling

* The mapping between the observable data and the

underlying processes is often stochastic and contains
measurement noise

— Repeated observations of the same phenomenon usually
vield different measurement realizations

— The measurements may be performed using different
instruments/sensors

* Each set of related measurements of the same
phenomenon will have a different geometric structure
— Depending on the instrument and the specific realization
— Poses a problem for standard manifold learning methods



Methods

There is noise in MRI data and issues with
calibration; our method allows us to separate the
signal from the noisy data.

Instead of looking at the individual realizations
(Diffusion Maps), we want to analyze the variability
of the statistics

We use local covariance matrices as feature vectors
for the statistics and measure the variability using
the Mahalanobis distance between covariances

It can be shown that the combination of the two
yields a local metric that is invariant to added noise



Mahalanobis Distance

Measures the distance of a point x from a data
distribution

The data distribution is characterized by a mean
and the covariance matrix, thus is hypothesized
as a multivariate gaussian

Used in pattern recognition as a similarity
measure between the pattern (data distribution
of training example of a class) and the test
example)

The covariance matrix gives the shape of how
data are distributed in the feature space




Data Features and Metric

The 3D matrices that are formed from the MRI are
subdivided into vectors that are made up of
overlapping neighborhoods around pixels

These vectors from MRI of patients with AD are
compared to the vectors from MRI of healthy
patients

We view the local histograms as feature vectors for
each measurement, s, (m)

We compute histograms to approximate the
probability distributions, because the MRI data are
assumed stochastic from various effects



Data Features and Metric

» Given a feature vector s,(m), we compute the local
covariance matrix in an interval of length J:

Sm=a 3 (s )y (m) — i)
m'=m-—J+1

 Mahalanobis distance:
ag(m,m') = (s, (m) —s,(m'))" B (s,(m) — s, (m))
d(m,m") = (1/2)(a5(m, m’) + ax(m’, m)
-invariant under linear transformations, thus by lemma,
noise resilient (Talmon & Coifman, 2013)

-approximates the Euclidean distance between samples of
the underlying process



1) Training Stage

Wg’m/ = exp d%(m, m)

€

* ¢gisthe kernel scale set according to the Mahalanobis
distance

 If mand m’ are in the same state, this is proportional to
the probability that m and m’ are in the same Gaussian
state

(Kushnir, 2012; Talmon, 2012)



2) Test Stage
Ae RMXN

Amm’ — exp Uy (m?m/)

Wr =ATA - {4,¢;}

W=AAT — {1y}

After constructing a Gaussian kernel over our dataset, we normalize the kernel using the
weighted graph Laplacian normalization to become a Markov transition matrix.

That matrix is conjugate to a symmetric matrix, and we calculate its spectral decomposition.
The eigenvalues of both matrices are identical.

We use the eigenvectors from the test stage for our data: any new datapoint, we embed
into the previous graph



Eigendecomposition

1
W;- T ~,"Ti P;

sy (m) = [A111(m), Aata(m), ..., Aethe(m)]"

Analytical construction that allows us to embed the output of
the measurements into the same normalized diffusion map
embedding



AD vs Normal

Nonnal vs AD
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The figure above shows the NLICA embedding using 3 eigenvectors of the MRI
data from 2 patients’ brains. The red points represent the data from the normal
brain and the blue points correspond to the AD brain.



2 healthy brains

Nonnal ws Nonnal

0.08 .
ons\
e L
o ——

20508 b o i
-U.Uﬁ,\..-"""""

-0.08
017

The figure above shows the NLICA embedding using 3 eigenvectors of the MRI
data from 2 healthy patients’ brains.



2 Alzheimer’s brains
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The figure above shows the NLICA embedding using 3 eigenvectors of the MRI

data from 2 Alzheimer’s patients’ brains.



2 Alzheimer’s and 2 healthy brains
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The figure above shows the NLICA embedding using 3 eigenvectors of the MRI data
from 4 patients’ brains. The red and yellow points represent the data from the AD
brain and the light and dark blue points correspond to the normal brain.



Earth Mover’s Distance (EMD)

 Method to evaluate dissimilarity between 2 multi-
dimensional distributions in some feature space
where a distance measure between single features,
the ground distance, is given. The EMD "lifts" this
distance from individual features to full distributions.

* Intuitively, given 2 distributions, one can be seen as a
mass of earth properly spread in space, the other as
a collection of holes in that same space. Then, the
EMD measures the least amount of work needed to
fill the holes with earth.



The EMD has the following advantages

* Naturally extends the notion of a distance between
single elements to that of a distance between sets,
or distributions, of elements.

* Allows for partial matches in a very natural way. This
is important, for instance, for image retrieval and to
deal with occlusions and clutter.

* |s atrue metric if the ground distance is metric and if
the total weights of two signatures are equal. This
allows endowing image spaces with a metric
structure.



4 Alzheimer’s and 4 healthy brains (using Earth
Mover’s Distance between histograms)
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The figure above shows the NLICA embedding using 3 eigenvectors of the MRI data
from 8 patients’ brains (4 healthy and 4 AD). This embedding was obtained using
the Earth Mover’s Distance between histograms.



1 Alzheimer’s and 3 healthy brains

3 Healthy Brains and 1 AD Brain
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The figure above shows the NLICA embedding using 3 eigenvectors of the MRI data
from 4 patients’ brains (3 healthy and 1 AD). The center of mass is represented by
the large green dot and used to determine how spread out the points are, allowing
us to choose which 3 eigenvectors to use for the embedding automatically.



Variance of AD points

3Healthy Brains and 1 AD Brain
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The figure above shows the NLICA embedding using 3 eigenvectors of the MRI data
from 4 patients’ brains (3 healthy and 1 AD). The center of mass is represented by
the large green dot, and this embedding was chosen from all possible embeddings
based on the maximum variance of AD points from the center of mass.



Variance Ratio

3 Healthy Brains and 1 2D Brain
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The figure above shows the NLICA embedding using 3 eigenvectors of the MRI data from 4
patients’ brains (3 healthy and 1 AD). The center of mass is represented by the large green
dot, and this embedding was chosen from all possible embeddings based on the maximum
variance ratio of healthy points divided by AD points from the center of mass.



Discussion

* Using this nonlinear and local network approach,
we were able to show a distinction between
brains of patients with AD and brains of healthy
patients.

 The combination of the local statistics and the
Mahalanobis distance as well as using the Earth
Mover’s Distance between histograms is
beneficial for such noisy MRI data

* This method is useful for nonlinear problems
without existing definitive models



Future Work for Alzheimer’s Disease
prediction

* Find an automatic AD classification algorithm
based on the obtained embeddings and use them
to assist doctors in diagnosing AD

e Test the algorithm on more data and more
patients

 Use the algorithm to distinguish among many
different patients’ brains



Acknowledgements

e Thank you to Professor Urszula Ledzewicz and
the organizers of the conference for inviting
me to give this talk

e Thank you to Thomas Strohmer, UC Davis, and
to my collaborators at Yale, Ronald Coifman
and Hitten Zaveri

e Thank you to NSF for support for this research
(NSF-DTRA grant 1322393)



References

Alzheimer’s Association: Alzheimer’s Disease Facts and Figures. Alzheimer’s &
Dementia, 6 (2010), 158-194.

R. Coifman, S. Lafon. Diffusion Maps. Appl. Comput. Harmon. Anal. 21 (2006),
5-30.

D. Duncan, R. Talmon, H.P. Zaveri, R.R. Coifman. Identifying Preseizure State in
Intracranial EEG Data Using Diffusion Kernels. Mathematical Biosciences and
Engineering, 10 (2013), 579-90.

D. Kushnir, A. Haddad, R.R. Coifman. Anisotropic diffusion on sub-manifolds with
application to earth structure classification. Appl. Comp. Harm. Anal., 32 (2012),
280-294.

A. Singer, R.R. Coifman. Non-linear independent component analysis with diffusion
maps. Appl. Comp. Harmon. Anal. 25 (2008), 226-239.

R. Talmon, D. Kushnir, R.R. Coifman, I. Cohen, S. Gannot. Parametrization of Linear
Systems Using Diffusion Kernels. IEEE Transactions on Signal Processing, 60 (2012),
1-15,.

W. Yang, R.L.M. Lui and X. Huang. Independent Component Analysis-Based
Classification of Alzheimer’s MRI data. J. Alzheimer’s Dis. 24 (2011), 775-783.

J. Ye et al. Sparse learning and stability selection for predicting MCl to AD
conversion using baseline ADNI data. BMC Neurology (2012), 12-46.



