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Aleksandra Falkiewicz
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Motivation of asymptotic state lumping

Figure: The theory refers to the question how to deal with complex and

interrelated models such as description of a metapopulation consisting of

several interacting with each other subpopulations.



Motivation of asymptotic state lumping

From macro to micro models

Let us assume that we have a macromodel of a metapopulation. In

order to build resonable relations in a micro scale we can:

1 Enhance the macromodel introducing dynamics into vertices.

2 Identify time scales that refer to the behaviour of, first,

individuals and then the whole society.

3 Check the consistency of the micromodel by comparing

dynamics of both models at the macroscale.
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From ODEs to transport equations on a network

Macromodel of mutation

Consider the population described by u = (u1, u2, u3), where uj is

the number of cells whose genotype belongs to the class j .

Evolution can be described by the

system

u′ = Ku,

where matrix K describing connections

between the nodes is given in the form

K =


1 + k11 0 0

k12 1 + k22 0

0 k23 1 + k33



u1 u2

u3

1 + k11

k12

1 + k22

k23k32

1 + k33



From ODEs to transport equations on a network

Introduction of micromodel

In order to introduce dynamics we identify each node with

one-dimensional domain. Position at the interval [0, 1] related to

the vertex uj informs about the age of individual whose genotype

belongs to the class j . The process of aging is described by

transport along the edges.
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From ODEs to transport equations on a network

Introduction of micromodel

Let us consider an oriented metric graph with weights

G = (V ,E , µ), where V = {v1, v2, . . . , vn} is a set of n vertices,

E = {e = vivj × [0, 1] : vi , vj ∈ V } is a set of m edges and the

function µ : E → R defines weights of edges such that

∀i ,j=1,2,...,n µ(vivj × [0, 1]) = wik where vi
ek→ vj .

We suppose that G is connected but not necessarily strongly

connected.

On each edge of a graph we define the function u = (u1, u2, ..., um)

that depends on the position on the edge x ∈ [0, 1] and the time

t ∈ R+.



From ODEs to transport equations on a network

Introduction of micromodel

Let us define matrix B = (bij)i ,j=1,2,...,n by

bij =

 wki if ∃k
ej→ vk

ei→

0 otherwise;

which describes the relation between edges of the graph. We

denote the matrix of speeds of transport at each edge by

C = diag {c1, c2, ..., cm} > 0. Now, the transport problem on

network can be formulated as follows

∂tu(x , t) = −C∂xu(x , t), x ∈ (0, 1)× R+,

u(0, t) = C−1BCu(1, t), t > 0,

u(x , 0) = ů(x), x ∈ (0, 1). (1)



From ODEs to transport equations on a network

Introduction of micromodel

Theorem

For an arbitrary matrix B, the transport model on generalized

network has a unique solution which can be represented by a

semigroup (T (t))t≥0,

u(x , t) = T (t )̊u(x)

generated by the operator A := −C∂x considered on the domain

D(A) =
{

u ∈W 1
1 ([0, 1])m : u(0) = C−1BCu(1)

}
.

Additionally, the solution to system (1) is positive for each positive

initial condition if and only if the matrix B is positive.



From ODEs to transport equations on a network

Identifying time scales

Processes in microscale occur much faster than those at the

macroscale. To separate different scales we modify a the problem

by introducing a small parameter: ∂tu(x , t) = Aεu(x , t); x ∈ (0, 1), t ∈ R+

u(x , 0) = ů(x); x ∈ (0, 1),
(2)

where (Aε)ε≥0 is a family of operators Aε = −1
ε∂x with a domain

of a form

D(A) =
{

u ∈ (W 1
1 ([0, 1]))m : u(0) = (I + εB) u(1)

}
.

0 1 0 1ej ei

1 + εbjj 1 + εbii
εbij
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From ODEs to transport equations on a network

Checking the consistency of the micromodel

Theorem

For any T ∈ (0,∞) there exists C (T ,B) such that for any

(sufficiently small) ε > 0 and ů ∈W1
1([0, 1]) the solution

uε(x , t) =
[
etAε ů

]
(x) of (2) satisfies

‖Puε(·, t)− v̄(t)‖Rm ≤ εC (T ,B)‖ů‖W1
1(I ), (3)

uniformly on [0,T ], where Pu =
∫ 1

0 u(x)dx and v̄ solves system of

ordinary differential equations: ∂t v̄(t) = Bv̄(t),

v̄(0) = Pů.
(4)



From ODEs to diffusion equations on a network

For a given (undirected) metric graph G = (V ,E ), one can

consider dynamical systems given on each edge, somehow coupled

through interactions at the vertices. Here we assume that on each

edge ej there is a substance with density uj , j = 1, 2, ...,m which

diffuses along this edge and can also enter adjacent edges through

semipermeable membrane. The flux from edge j is proportional to

the difference of weighted density at the endpoint of ej and the

densities at edges incident to this endpoint of ej which results in a

system of interlinked Robin boundary conditions.



From ODEs to diffusion equations on a network

To write down the analytical formulation of the problem, we find it

useful to introduce an orientation on G noting that, since diffusion

is invariant under the change of the direction, it does not matter

which end point of ej we identify with 0 and which one with 1.

However, once such identification is made, we shall refer to the

vertex incident to the edge at 0 as the left endpoint (tail) and the

vertex incident at 1 as the right endpoint (head).



From ODEs to diffusion equations on a network

Let lj and rj be the probabilities of diffusing from ej to the edges

incident at the left and right, respectively and let ljk and rjk be the

probabilities that, after diffusing from edge ej to the left, a particle

ends up in ek and, respectively, after diffusing from ej to the right,

the particle ends up in ek .

· · ·

·

·

·

ej ei

ekes

er
rjk

rj rjiljljr

ljs



From ODEs to diffusion equations on a network

Then, the Fick’s law at the head v of ei (identified with 1 on ei ),

takes the form

− u′i (1) = riui (1)−
∑
j 6=i

rijuj(v), (5)

where we have written uj(v) as v may be either the tail or the

ahead of an incident edge ej .



From ODEs to diffusion equations on a network

At the left endpoint w of ei (identified with 0 on ei ) we have

u′i (0) = liui (0)−
∑
j 6=i

lijuj(w), (6)

where w is the tail ei . We adopted convention that if ej is not

incident with the the head of ei , then rij = 0 and, similarly, if ej is

not incident with the tail of ei , then lij = 0.



From ODEs to diffusion equations on a network

In order to present boundary conditions we introduce matrices K 00,

K 01, K 10, K 11. For any i , j = 1, 2, ...,m we have

k00
ij = −lij if

ej← · ei→ , k01
ij = −lij if

ej→ · ei→,

k10
ij = rij if

ei→ ·
ej→, k11

ij = rij if
ei→ ·

ej←

k00
ii = li k11

ii = −ri .

· · ·

·

·

·

ej ei

ekes

er
rjk

rj rjiljljr

ljs



From ODEs to diffusion equations on a network

Then the model can be written as

∂tu(x , t) = D∂xxu(x , t), (x , t) ∈ (0, 1)× R+,

∂xu(0, t) = K00u(0, t) + K01u(1, t), t > 0,

∂xu(1, t) = K10u(0, t) + K11u(1, t), t > 0,

u(x , 0) =
◦
u(x), x ∈ (0, 1) , (7)

where u = (u1, . . . , um), D = diag{σi}1≤i≤m.

Note that there is no need to restrict ourselves to matrices Kij

arising from the diffusion on graphs. We can consider a family of

diffusion processes depending on an abstract attribute

j = 1, 2, ...,m which may switch between each other according to

the rule given by Kij .



From ODEs to diffusion equations on a network

Theorem

For arbitrary matrices K00, K01 K10, K11, the diffusion model on a

generalized network has a unique solution which can be

represented by a semigroup (T (t))t≥0,

u(x , t) = T (t )̊u(x)

generated by the operator A := D∂xx considered on the domain

D(A) =

u ∈ Y :
∂xu(0, t) = K00u(0, t) + K01u(1, t)

∂xu(1, t) = K10u(0, t) + K11u(1, t)


where Y = W2

1([0, 1]).



From ODEs to diffusion equations on a network

In analogy to the transport problem on a generalized network we

can a introduce small parameter to identify different time scales.

We obtain a family of problems for ε > 0 of a form

∂tu(x , t) =
1

ε
∂xxu(x , t), (x , t) ∈ (0, 1)× R+,

∂xu(0, t) = εK00u(0, t) + εK01u(1, t), t > 0,

∂xu(1, t) = εK10u(0, t) + εK11u(1, t), t > 0,

u(x , 0) =
◦
u(x), x ∈ (0, 1) , (8)



From ODEs to diffusion equations on a network

Theorem

Let uε(t) = etAε ů with ů ∈W2
1([0, 1]) be the solution of (8) in

L1([0, 1]) and v̄ and w̃0 be the solutions, respectively, to

∂t v̄ =
(
K10 −K00 + K11 −K01

)
v̄, v̄(0) = P◦u (9)

∂τ w̃0(x , τ) = ∂xx w̃0(x , τ), ∂x w̃0(1, τ) = ∂x w̃0(0, τ) = 0,

w̃0(x , 0) = ů(x)− P̊u.

Then, for any 0 < T <∞, there is C = C (T ,K00,K01,K10,K11)

such that, uniformly on [0,T ], the following condition is satisfied

‖uε(t)− v̄(t)− w̃0(t/ε)‖L1([0,1]) ≤ εC‖ů‖W2
1([0,1]). (10)



Summary

The result in the diffusion case is of a different type than in the

transport equation. In the former, the initial layer term w̃0 decays

exponentially to 0 as ε→ 0 for any t > 0. Hence, outside an O(ε)

transition zone, the whole solution to the PDE problem on a

network (8) can be approximated by the solution of an ODE

system (9).

In contrast to the diffusion problem, in transport the solution

outside the hydrodynamic space does not decay exponentially.

Hence, we only can approximate the macroscopic characteristics of

the flow; that is, the mass on each edge, given by Pu, by the

solution to ODE.
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13, 1501-1510.

M. Kramar, E. Sikolya, Spectral properties and asymptotic

periodicity of flows in networks, Mathematische Zeitschrift

(2005) No. 249, 139-162


	From ODEs to transport equations on a network
	From ODEs to diffusion equations on a network
	Summary

