Stationary wave on the sphere
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The equation
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V2 - the reduced Laplace-Beltrami operator on the unit sphere in R3
under the assumption of the axial symmetry.

V(u,0) = —Bu+ BH(u — o), (3)

with B >0, 0 € (0,1) and H : IR — [0, 1] the Heaviside function. Below,
we will suppose that D = 1.



The reaction term
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Plot of the function V(u, o) for c = 0.3
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Motivation

B. Hat, B. Kazmierczak, and T. Lipniacki, B cell activation triggered by
the formation of the small receptor cluster: A computational study,
PLOS Comp. Biol., 5 (2011), e1000448
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K - surface concentration of the activated membrane kinase molecules, R
- concentration of non-diffusing activated membrane receptors.






Construction

1. Fix no € (0, 7). Solve the equations:

D(sinxZ)u+B(1—u)=0, xé€(0,m)

%(sin xa%)u —Bu=0, xé&(n,n)

with the conditions @ =0at x=0,7.

Ox

2. Determine the multiplicative constants to guarantee C!-smoothness of
the obtained solution.

3. Find the correspondence between the parameters 7y and o.



Construction. Existence theorem

The function
1+C1(770) F(_>‘Bv)‘3+]-,1;1_c%)7 0 < x < no,
u(x;mo) = § Go(mo)F(—Ag, Ag + 1, 1; 1), no < X < T,
s X = To,

where \g :=1/2(—1+ /1 —4B), satisfies the considered equation. We
have:

G(mo) = G(no: B)=—2 F(=As+ 1, +2,2; M%)SWT%,

w
Co(10) = G0 B) = & F(—Ag + 1, Ag +2,2; 1=y
where, for S =4B — 1,
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Gauss hypergeometric function

F(a,b,c,z):=2Fi(a, b, c,z) is a hypergeometric function
satisfying the hypergeometric equation
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The functions F(—Xg,Ag + 1,1;2) and F(—Xg,A\g +1,1;1 — z) for B = 25.



Construction

One to one correspondence between 7 and o = u(no; 7o)

The mapping (0,7) 3 no — u(no;no) = o € (0, 1) is bijective. The
value of u(no; o) is an increasing function of ng € (0,m). More precisely,

du(neine) __ do
gt = 42 >0 for all ng € (0, ).
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Relation between between the transition point 1o and the parameter o for B:
10, 50 and 100



Profiles of the stationary waves for different o and B
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Profiles of the stationary solution for different values of o: 0.1 (the lowest
curves), 0.2, 0.4, 0.6, 0.8 (the highest curves) for different values of B: 10 (left
panel), 50 (middle panel) and 100 (right panel). By dots we have denoted the

points (no(0), o).



Asymptotic properties of the stationary waves

Let us fix an arbitrarily small s; > 0 and set s, =7 — 5. Also let 1 > 0
and g2 > 0 be given. Then the following hold:

i

For a, b € (0, 7) with a < b, we have o(ng; B) — 1/2 uniformly for

1o € [a,b] as B — 0.
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Relation o(no) for B = 1000 (the solid line and the points) and its limit form
as B — oo (dashed line).



Asymptotic properties of the stationary waves

ii.
For o € (0,0.) with

o« € (0,1/2), we have ng(0; B) € (0,51) for all B

sufficiently large, and u(x;no(o; B)) € (0,£1) for all x € (2,7) and for

all B sufficiently larg
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Profiles of the stationary solutions for B = 1000 and o = 0.417 corresponding
to no = 0.1 (solid line) and its limit as B — oo (the dashed line and the point).



Asymptotic properties of the stationary waves

iii.

For o € (0*,1) with o* € (1/2,1), we have 75(c; B) € (s2,7) for all B
sufficiently large, and u(x;no(o; B)) € (1 —e1,1) for all x € (0,7 — &)
and for all B sufficiently large.

u

1.0
0.8; \
‘ ‘ ‘ ‘ ‘ X

05 10 15 20 25 3.

0.4¢
0.2p

0.0r .

Profiles of the stationary solutions for B = 1000 and o = 0.583 corresponding
to no = m — 0.1 (solid line) and its limit (the dashed line and the point) as
B — oc.



'Separatrix’ properties of the stationary fronts

Let 0 = 09 € (0,1) be fixed. Then for any o = o1 > 0y,
U(x; 01) > U(x;00) and is a subsolution to the equation

VZu+ &(u; 00) = 0.

Likewise, for any o = 05 < 09, U(x;01) < U(x;00) and is a
supersolution to this equation.




'Separatrix’ properties of the stationary fronts
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The stationary solutions U(x; 0p) are not stable. Given o and
any initial data wj,(x) such that uj,(x) > U(x; 0g) we can find a
subsolution U;(x, t; ujp), increasing in t, such that

Ur(x, tuip) 1 as t— oo.
Likewise, for any initial data uj,(x) such that uj,(x) < U(x; 09) we
can find a supersolution U~ (x, t; uj,), decreasing in t, such that

U (x,t;uip) >0 as t— oo.



Separatrix of the stationary fronts
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The profiles of the stationary solutions Uy(x; og) with B = 1000 for
gg = 0.52 and agg = 0.48.

The change in the reaction function may be caused by an external signal,
which implies a reorganization inside the cell.



Instability properties of the stationary fronts
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The profiles of the stationary solutions Uy(x; oo) with B = 1000 for
gy = 0.54 and agg = 0.46.



Example: Calcium wave on oocytes

time 0 sec 10 sec 20 sac 40 sec

A heteroclinic calcium wave in a starfish egg after fertiliziation.
The wave propagates from the animal pole to the vegetal pole of
the egg. Red - high Ca concentration.



