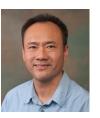
The Role of the Immune Response in CML

Doron Levy


Department of Mathematics Center for Scientific Computation and Mathematical Modeling University of Maryland, College Park

Thanks: NSF, NIH (NCI/NIGMS), UMD-NCI, Guggenheim Foundation

Będlewo, Poland, June 2015

Joint work with

Peter Lee, MDCity of Hope

* Peter KimSydney

Cristian Tomasetti
 Johns Hopkins

Frank Nicolini, MD
 Lyon

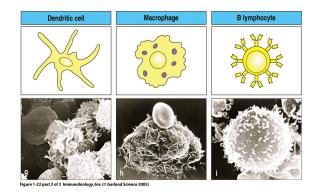

Thomas Lepoutre
 Lyon

Geoff Clapp
 Maryland

University of Maryland, College Park

- * Chronic Myelogenous Leukemia
- * Modeling the role of the immune response
- * Relapse: drug resistance and cancer stem cells
- * Revisiting the role of the immune system

Leukemia


Normal state:

Stem cells turn into mature cells

* Leukemia:

A malignant transformation of a stem cell or a progenitor cell

- Myeloid or Lymphocytic
- Acute or Chronic

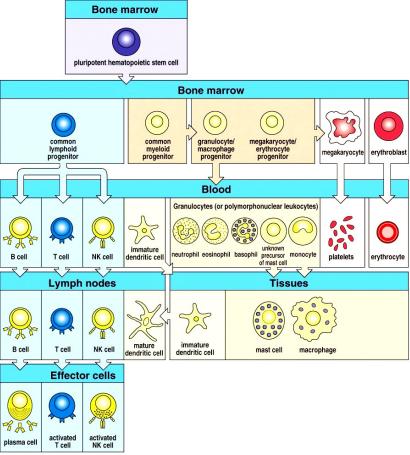
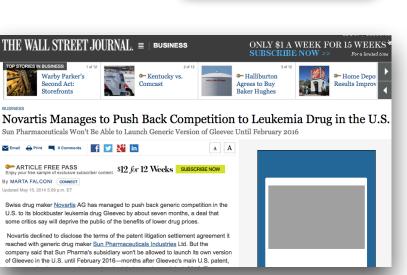


Figure 1-3 Immunobiology, 6/e. (© Garland Science 2005)

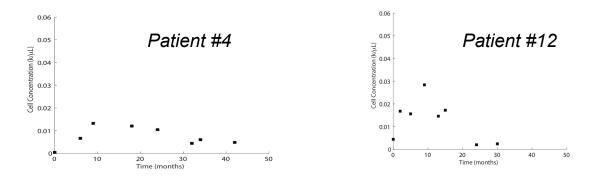

CML

- * Philadelphia chromosome
 - Translocation (9;22)
 - Oncogenic BCR-ABL gene fusion

UNOVARTIS

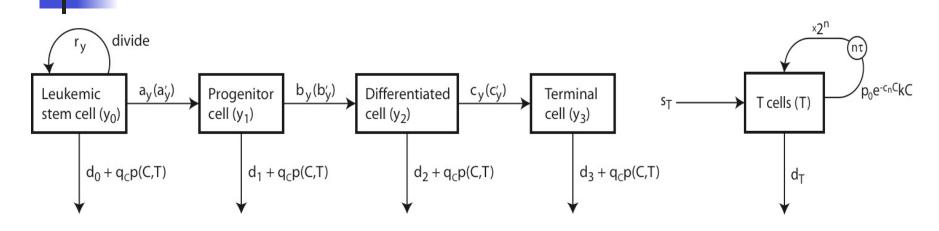
glivec 400 mg

- The ABL gene expresses a tyrosine kinase. Growth mechanisms
- Easy to diagnose
- Drug targeting this genetic defect (tyrosine kinase inhibitor)
- * Imatinib (Gleevec)
 - Molecular targeted therapy
 - \$30K/yr ('01) \$98K/yr ('13)



1. Stop Imatinib

2. Combination immunotherapy + chemotherapy


T_{V} T T Studying the immune response

- * Shown: the specific anti-leukemia immune response
 - Different patients, Imatinib, 50 months, each dot = one blood test
- * A different immune response for each patient. However:
 - At the beginning of the treatment: no immune response
 - Peak: around 6-12 months (after starting the drug treatment)
 - Later: waning immune response

Question: What is the relation between the dynamics of the cancer, the drug, and the immune response?

A mathematical model (Kim, Lee, Levy 2008)

★ Ingredients:

- Leukemia cells: stem cells, ..., fully functional cells
- Mutations
- Drug (Imatinib)
- Anti leukemia immune response
- * Michor *et al.* (Nature '05) + immune response

Cronkite and Vincent (69), Rubinow (69), Rubinow & Lebowitz (75), Fokas, Keller, and Clarkson (91), Mackey et al (99,...), Neiman (00), Moore & Li (04), Michor et al (05), Komarova & Woodarz (05).

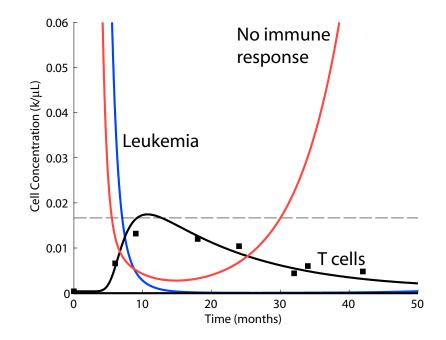
TT Michor's model + immune response

$$\begin{split} \dot{y}_0 &= [r_y(1-u) - d_0]y_0 - q_c p(C,T)y_0\\ \dot{y}_1 &= a_y y_0 - d_1 y_1 - q_c p(C,T)y_1\\ \dot{y}_2 &= b_y y_1 - d_2 y_2 - q_c p(C,T)y_2\\ \dot{y}_3 &= c_y y_2 - d_3 y_3 - q_c p(C,T)y_3 \end{split}$$

 $\begin{aligned} \dot{z}_0 &= [r_z - d_0] z_0 - q_c p(C, T) z_0 \\ \dot{z}_1 &= a_z z_0 + d_1 z_1 - q_c p(C, T) z_1 \\ \dot{z}_2 &= b_z z_1 + d_2 z_2 - q_c p(C, T) z_2 \\ \dot{z}_3 &= c_z z_2 + d_3 z_3 - q_c p(C, T) z_3 \end{aligned}$

 $\dot{T} = s_t - d_t T - p(C, T)C + 2^n q_T p(C_{n\tau}, T_{n\tau})C_{n\tau}$

• Cells without mutations

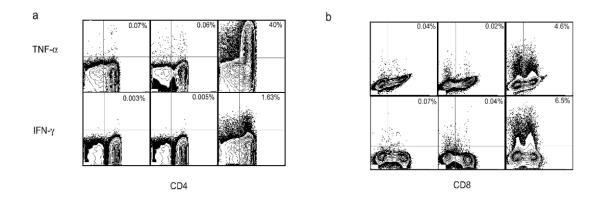

• Cells with mutations

• Anti-Cancer T cells

$$p(C,T) = p_0 e^{-c_n C} kT, \ C = \sum (y_i + z_i), \ C_{n\tau} = C(t - n\tau)$$

T_{V} Accounting for the immune response

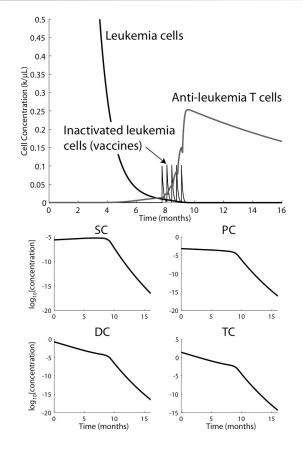
- Dots: data from a patient
- Dashed line: remission
- Results of mathematical simulations
 - 50 months
 - Cancer load without an immune response
 - Cancer load with an immune response
 - The immune response


T_{V} = T Biological conclusion from the math

Conclusion: remission is the result of a complex interaction between cancer, imatinib, and the immune response

Questions: Why does the immune response not cure the disease? Can we do something to cure it?

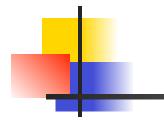
Idea: augment the immune response


T_{V} T T Stimulating the immune response

- ★ Experimental design:
 - Irradiate the blood of the patient from when the disease was diagnosed
 - Mix it with blood taken from the patient at a later time point
 - Measure the anti-leukemia immune response
- ★ Result:
 - Works *in vitro*. Leads to the notion of "Cancer vaccines"

Cancer Vaccines: a mathematical design

- \star A vaccination plan
- Solving an optimization problem:
 - Dosage
 - Timing
- Individual planning: based on the immune response of each patient

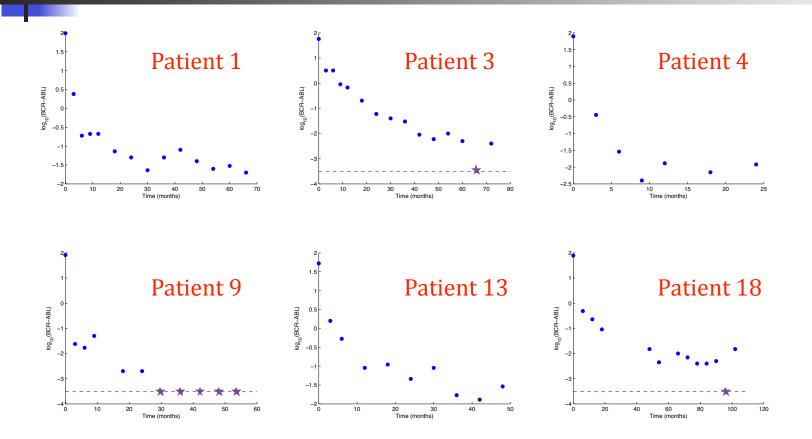


• Inactivated leukemia cells

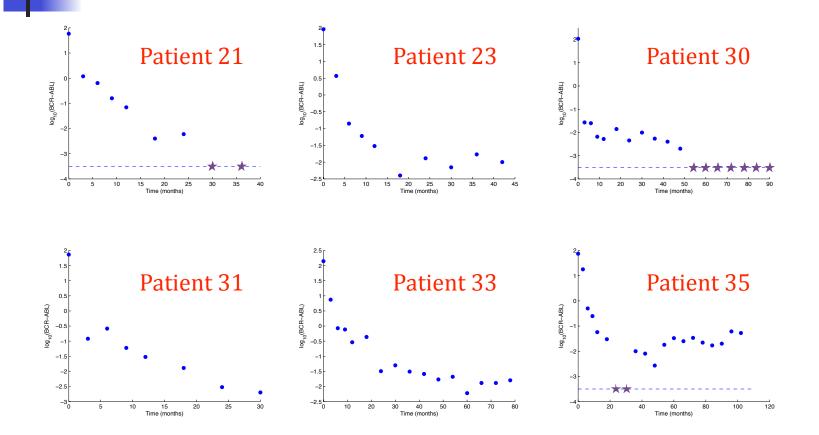
$$\dot{V} = -d_V V - q_c p(C, T) V + s_V(t)$$

• Anti-Cancer T cells

$$\dot{T} = s_t - d_t T - p(C, T)(C + V) + 2^n p(C_{n\tau}, T_{n\tau})(q_T C_{n\tau} + V_{n\tau})$$



Interesting & Nice!


But –

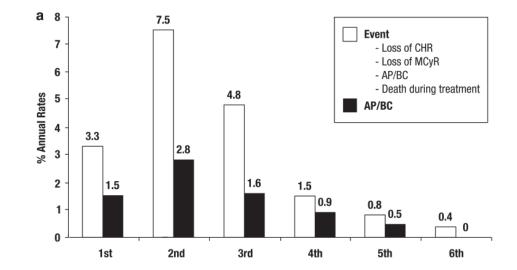
Is that what patients data really looks like?

BCR-ABL Ratio (CML patients data from Lyon)

BCR-ABL Ratio (CML patients data from Lyon)

We see:

Relapse


Remission (cure??, oscillations)

Mathematical models of drug resistance in cancer (Tomasetti + DL, PNAS 2010)

Studying the relapse: A Tale in 3 Acts

CML: studying drug resistance

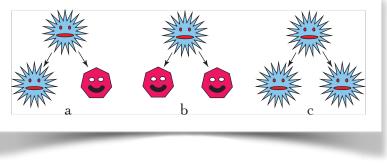
"Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia", *Hochhaus et al. (Leukemia 2009)*

On the probability of developing drug resistance by the time a tumor is diagnosed

Mathematical models of drug resistance in cancer

- * Goldie & Coleman; Iwasa, Nowak, & Michor; Komarova; Roeder; ...
- * Iwasa, Novak, & Michor (Genetics, 2006):
 - The probability of developing resistance by the time a tumor is diagnosed:

$$P = 1 - \exp\left(-\frac{MuL}{D}\ln\frac{L}{L-D}\right)$$


* $L \mathfrak{S} D$ = birth & death rates; u = mutation rate

* M = total number of cancer cells (!)

- * Actual values: $M = 10^9$, $u \ge 10^{-8}$
 - The probability of developing resistance by the time a tumor is diagnosed is greater than 0.9999
 - Resistance must always be present in large numbers

Cancer Stem Cells

- * Leads to the Stem-Cell Hypothesis
 - Cancer cells (just like healthy cells) are not all alike
 - The tumor population is heterogeneous
 - Stem cells have the ability of self-renewal. They are very long lived.
 - From the point of view of drug resistance it is the long lived cells we should care about
- ★ Division of stem cells:
 - Asymmetric division prob = *a*
 - Symmetric differentiation prob = *b*
 - Symmetric renewal prob = c = 1 a b

Drug resistance & cancer stem cells

- * **Modified Question**: What is the probability that at the time of detection there are cancer stem cells that developed resistance to the drug?
- * Answer (Tomasetti+DL): Extension of the Iwasa *et al.* result

$$P_R = 1 - \exp\left(-uM\left(\frac{1 - \frac{a}{2} - b}{1 - a - b}\right)\right)$$

or (for nonzero D):

$$P_R = 1 - \exp\left(-uM\left(\frac{1-\frac{a}{2}-b}{1-a-b}\right)\frac{1}{C}\ln\left(\frac{1}{1-C}\right)\right)$$
$$C = \frac{D+Lb}{L(1-a-b)}$$


M=CSCs, u=mutation rate, D&L=birth&death rates

On symmetric vs. asymmetric differentiation

Question: What is the probability of developing resistance by the time of detection?

* The range of *a* and *b* for which $P_{R} < 0.15$.

Cancer Stem Cells must shift towards an increased symmetric renewal

What does it mean?

Why do relapses stop?

Hypothesis: relapses are related to the drug response

- Two points of view in the literature:
 - Cancer Stem Cells are the only sub-population that is resistant to the drug (Michor & Novak)
 - Cancer Stem Cells are sensitive to the drug but shift rapidly between active and dormant states (Roeder)

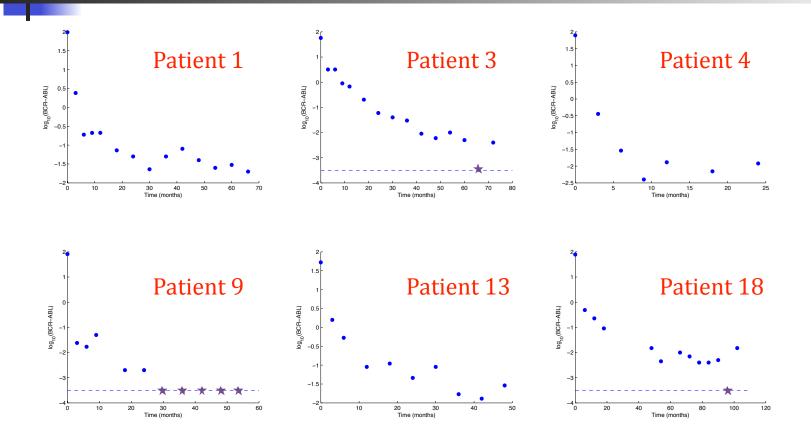
Our hypothesis: Cancer Stem Cells must be affected by the drug. The drug keeps the CSCs in a dormant state

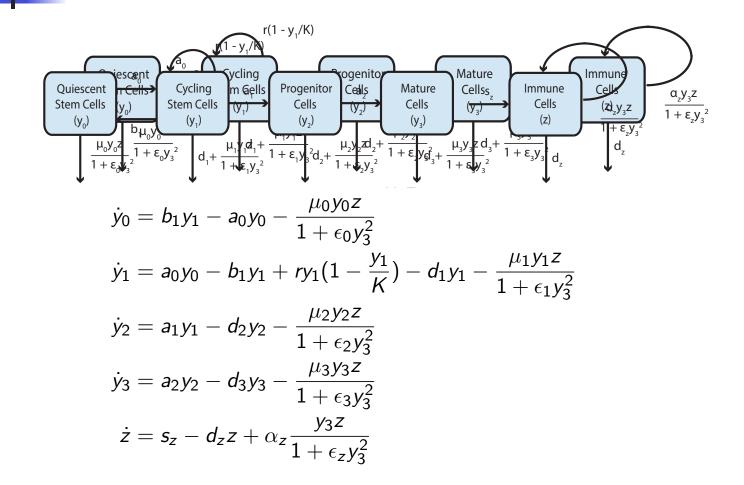
- ★ Explains:
 - Why there is an immediate relapse when stopping Imatinib
 - Eventual relapse when there are pre-treatment drug-resistant CSCs
 - No further relapses after 5-6 years

When did the resistance develop?

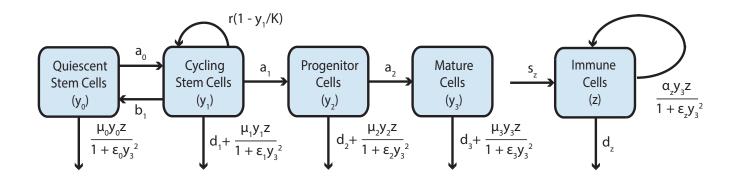
- ★ If resistance developed, it must have happened by the time of detection
- ***** The results of the the mathematical calculation:
 - On average, resistance must have developed in the 3-4 months prior to detection

Finalé – Clinical consequences:

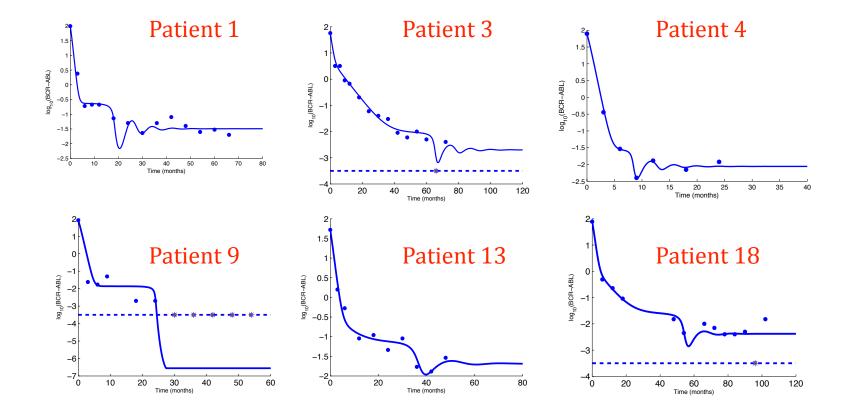

- Early detection of CML will increase the chances of survival.
- Patients should be treated immediately.

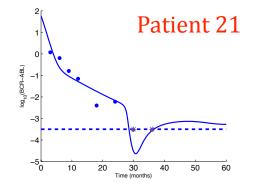


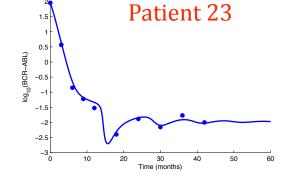
Revisiting the role of the immune response

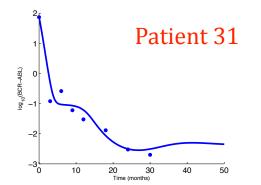

BCR-ABL Ratio (Patients data from Lyon)

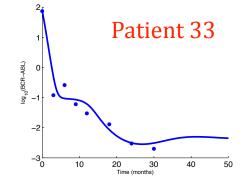
Modeling CML + immune system

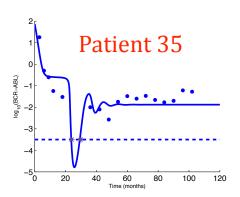

Modeling CML + immune system


- IM affects a₁ and a₂
- Patient specific parameters: immune parameters, a_1 , a_2
- Latin hypercube sampling is applied with cost function


$$\sum_{i=0}^{k} (\log(r_e(t(i))) - \log(r_0(t(i))))^2$$


Fitting patients data




Fitting patients data

40 60 Time (months) 80

100

Patient 30

log10(BCR-ABL)

-5

-6

-7L 0

20

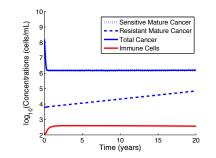
Resistance and drug delivery (w. Clap & Sontag)

- * Assuming: a small resistance clone at diagnosis
- Resistance cancer population differs from the sensitive one by its growth rate and carrying capacity
- Sensitive and resistant cells compete
- Treatment has a stronger effect on the sensitive population: smaller growth rate and carrying capacity
- Interactions between the immune system and cancer is independent of the cancer's sensitivity to the drug

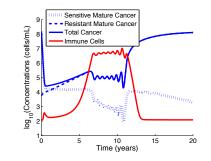
Resistant clone

$$\begin{split} \dot{y}_0 &= b_1 y_1 - a_0 y_0 - \frac{\mu_0 y_0 z}{1 + \epsilon_0 (y_2 + x_2)^2} \\ \dot{y}_1 &= a_0 y_0 - b_1 y_1 + r y_1 (1 - \frac{y_1 + x_1}{K_x}) - d_1 y_1 - \frac{\mu_1 y_1 z}{1 + \epsilon_1 (y_2 + x_2)^2} \\ \dot{y}_2 &= a_{1y} y_1 - d_2 y_2 - \frac{\mu_2 y_2 z}{1 + \epsilon_2 (y_2 + x_2)^2} \\ \dot{x}_0 &= b_1 x_1 - a_0 x_0 - \frac{\mu_0 x_0 z}{1 + \epsilon_0 (y_2 + x_2)^2} \\ \dot{x}_1 &= a_0 x_0 - b_1 x_1 + r x_1 (1 - \frac{y_1 + x_1}{K_y}) - d_1 x_1 - \frac{\mu_1 x_1 z}{1 + \epsilon_1 (y_2 + x_2)^2} \\ \dot{x}_2 &= a_{1x} x_1 - d_2 x_2 - \frac{\mu_2 x_2 z}{1 + \epsilon_2 (y_2 + x_2)^2} \\ \dot{z} &= s_z - d_z z + \alpha_z \frac{(y_2 + x_2) z}{1 + \epsilon_z (y_2 + x_2)^2} \end{split}$$

Effect of TKI on resistant & sensitive clones

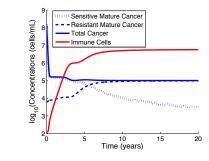

Before, therapy:

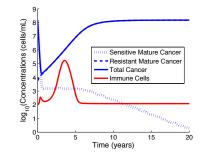
$$K_y = K_x = K$$
$$a_{1y} = a_{1x} = A$$

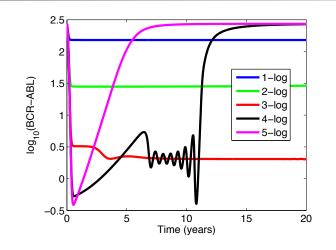

During therapy:

$$K_y = K/inh_0$$

 $K_x = K$
 $a_{1y} = A/inh_1$
 $a_{1x} = A$

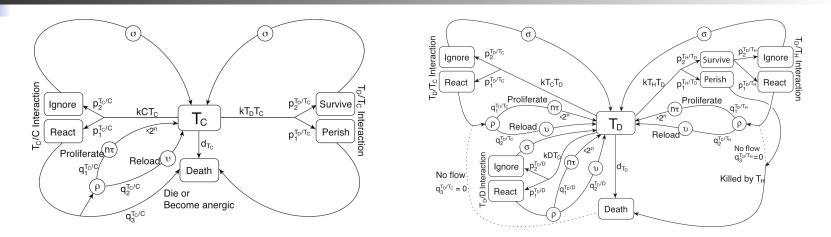

Low Dose: $inh_0 = 1.04$, $inh_1 = 100/1.04$


Higher Dose: $inh_0 = 1.16$, $inh_1 = 10000/1.16$


Moderate Dose: $inh_0 = 1.08$, $inh_1 = 1000/1.08$

Highest Dose: $inh_0 = 1.32$, $inh_1 = 100000/1.32$

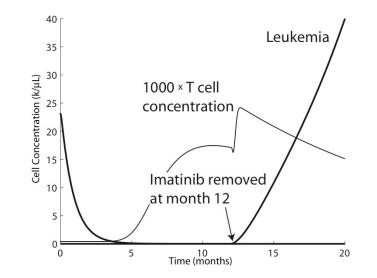
Varying dose in response to drug resistance



- Low doses only eliminate a small portion of the sensitive cancer load
- High doses eliminate the sensitive cells rapidly, making room for the resistant clone to expand
- At 3-log and 4-log doses, relapse is delayed significantly

Conclusion

- ***** Medical Applications:
 - Quantitative approach
 - A complex biological setup the tip of the iceberg
 - Future directions: (i) stop imatinib; (ii) immunotherapy + drug therapy combination
- ***** Math:
 - New challenges
 - New math
 - Can potentially be useful


Modeling a transplant (DeConde, Kim, Lee, DL - JTB)

- Mini-transplants
- Clinically used but only for tough patients
- Conclusion of mathematical/medical study: use for all patients
- Adjust the amount of chemo to the individual patient quantitatively!

T_{V} T Stopping imatinib (simulation)

- Stopping Imatinib treatment after one year
- The disease relapses within months
- * The mathematical simulation agrees with the medical experiments

