Pattern formation in reaction-diffusion-ode models

Anna Marciniak-Czochra

Institute of Applied Mathematics and IWR, Heidelberg University

Based on joint works with Grzegorz Karch (Wroclaw University), Kanako Suzuki (Ibaraki University) and Steffen Härting (Heidelberg U.)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Reaction-diffusion-ode models of biological processes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Receptor-based models

Macroscopic receptor-based models

Mechanisms of pattern formation

- What is the role of non-diffusing components ?
- Can models with only one diffusion exhibit patterns?

Classical concept of pattern formation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Turing idea

Diffusion-driven instabilities (DDI) \rightarrow Turing-type patterns

- DDI takes place when
 - the kinetics system is asymptotically stable
 - the complete system unstable for spatially non-homogeneous perturbations
- Linear stability analysis

$$\tilde{A}(\mu_m) = A - \frac{1}{\gamma} D {\mu_m}^2.$$

A is Jacobian matrix at a steady state and μ_m^2 is a wavenumber obtained from the Laplacian's eigenproblem:

$$\Delta_x \phi_m = -\mu_m^2 \phi_m \text{ in } \Omega, \\ \partial_n \phi_m = 0$$

Dispersion relation

- Eigenvalues λ of \tilde{A} depend on the model parameters and the wave number μ_m^2 .
- DDI condition for a 2-equation model det $\tilde{A}(\mu_m) > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The dependence $\lambda(\mu_m^2)$ is called the dispersion relation.

How do patterns grow?

Examples in two-dimensional domain

Turing patterns

Definition

By Turing patterns we call the solutions of reaction-diffusion equations that are

- stable,
- stationary,
- continuous,
- spatially heterogenous and
- arise due to the Turing instability (DDI) of a constant steady state.

DDI in the model with 1 diffusion operator

- DDI condition: $(-1)^k \det \tilde{A} < 0$, where $\det \tilde{A} = \det A \frac{\mu_m^2}{\gamma} \det A_{ODE}$
- Destabilisation of the constant stationary solution is caused by the ODE subsystem

How does it work for two equations?

$$u_t = f(u, v),$$

$$v_t = D_v \Delta v + g(u, v)$$

$$\partial_n v = 0 \qquad x \in \partial \Omega, \ t > 0$$

$$u(x, 0) = u_0(x),$$

$$v(x, 0) = v_0(x).$$

Theorem

Assume that the constant vector (\bar{u}, \bar{v}) is a (stationary) solution of the initial-boundary value problem for this reaction-diffusion-ode system. If

$$f_u(\bar{u},\bar{v})>0,$$

then (\bar{u}, \bar{v}) is an unstable solution of this problem. Autocatalysis leads to DDI.

Reaction-diffusion-ode system with DDI leading to unbounded growth of solutions

(日) (日) (日) (日) (日) (日) (日) (日)

Inspiring example: Model of early cancerogenesis

- Cell proliferation is influenced by growth factor
- Growth factor is externally supplied or produced by the cells
- Growth factor diffuses along the structure formed by the cells and binds to cell membrane receptors

A.M-C and M.Kimmel, Math. Meth. Mod. Appl. Sci, 2007, A.M-C and M.Kimmel, Math. Mod. Natural Phenomena, 2008, ...

Basic model

$$u_t = \left(\frac{a\frac{v}{u}}{1+\frac{v}{u}} - d_c\right)u,$$

$$v_t = -d_bv + u^2w - dv,$$

$$w_t = \frac{1}{\gamma}w_{xx} - d_gw - u^2w + dv + \kappa_0$$

for $x \in (0, 1)$, t > 0 with the homogeneous Neumann boundary conditions for the function w = w(x, t).

• The model has a positive spatially constant stationary solution exhibiting DDI (the autocatalysis condition is fulfiled)

A.M-C, G.Karch, K.Suzuki, J.Math.Pures et Appl., 2013

Spatial profiles of the solutions

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Random initial perturbation

Goal: Understand what we see in simulations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Do we observe Turing patterns?

- Spatially homogeneous solutions are uniformly bounded
- The model has a positive spatially constant stationary solution exhibiting DDI (the autocatalysis condition is fulfiled)

• We show that all Turing patterns are unstable.

Generic reaction-diffusion-ode system

$$egin{aligned} u_t &= f(u,v), & ext{for} \quad x \in \overline{\Omega}, \ t > 0 \ v_t &= D \Delta v + g(u,v) & ext{for} \quad x \in \Omega, \ t > 0 \end{aligned}$$

in a bounded domain $\Omega \subset \mathbb{R}^n$.

• Homogeneous Neumann boundary condition:

$$\partial_n v = 0$$
 for $x \in \partial \Omega$, $t > 0$

Initial data:

$$u(x,0) = u_0(x), \qquad v(x,0) = v_0(x).$$

- *D* > 0
- Arbitrary C^1 -nonlinearities f = f(u, v) and g = g(u, v).

Regular stationary solutions

Assume that we can solve the equation

f(U(x),V(x))=0

to have

$$U(x)=k(V(x))$$

for a C^1 -function k = k(V). Regular stationary solutions of

> f(U, V) = 0, $D\Delta V + g(U, V) = 0$ $\partial_n V = 0 \qquad x \in \partial \Omega$

satisfy the boundary value problem

 $D\Delta V + h(V) = 0,$ $\partial_n V = 0 \quad \text{on} \quad \partial\Omega,$

where h(V) = g(k(V), V).

Construction of patterns in one-dimensional domain

- Energy equation ¹/₂z² + H(V) = C, where V' = z.
- All trajectories are symmetric with respect to V-axis.
- The condition z(0) = z(T) is satisfied for a certain T < 0 if energy describes a close curve for a certain C ∈ ℝ.
- Such closed curves exist only if the potential energy H(V) has a local minimum.

We construct regular periodic patterns:

Which solutions are stable?

- Several nonconstant solutions for sufficiently small D
- As long as $D > m^2 D_0$ there exists a solution with *m* peaks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Instability of stationary solutions

Theorem

Let (U, V) be a regular stationary solution satisfying the autocatalysis assumption

 $f_u(U(x), V(x)) > 0$ for all $x \in \overline{\Omega}$.

Then, (U, V) is an unstable solution.

The same mechanism which destabilizes constant solutions of such models, destabilizes also non-constant stationary solutions.

Linearisation and Spectral Mapping Theorem

Lemma

Consider the linear operator \mathcal{L} given by

$$\mathcal{L}\left(\begin{array}{c}\tilde{u}\\\tilde{v}\end{array}\right) \equiv \left(\begin{array}{c}0\\\Delta\tilde{v}\end{array}\right) + \left(\begin{array}{c}f_u(U,V) & f_v(U,V)\\g_u(U,V) & g_v(U,V)\end{array}\right) \left(\begin{array}{c}\tilde{u}\\\tilde{v}\end{array}\right)$$

with homogeneous Neumann boundary condition $\partial_{\nu}\tilde{v} = 0$. Then, the operator \mathcal{L} with $D(\mathcal{L}) = L^2(\Omega) \times W^{2,2}(\Omega)$ generates an analytic semigroup $\{e^{t\mathcal{L}}\}_{t\geq 0}$ of linear operators on $L^2(\Omega) \times L^2(\Omega)$, which satisfies

$$\sigma(e^{t\mathcal{L}})\setminus\{0\}=e^{t\sigma(\mathcal{L})} \qquad \textit{for every} \quad t\geq 0.$$

Spectrum of \mathcal{L}

Define the constants

$$\lambda_0 = \inf_{x\in\overline{\Omega}} f_u(U(x),V(x)) > 0$$
 and $\Lambda_0 = \sup_{x\in\overline{\Omega}} f_u(U(x),V(x)) > 0,$

The spectrum $\sigma(\mathcal{L})$ of the linear operator

 $\mathcal{L}\left(\begin{array}{c}\tilde{u}\\\tilde{v}\end{array}\right)\equiv\left(\begin{array}{c}0\\\Delta\tilde{v}\end{array}\right)+\left(\begin{array}{c}f_{u}(U,V)&f_{v}(U,V)\\g_{u}(U,V)&g_{v}(U,V)\end{array}\right)\left(\begin{array}{c}\tilde{u}\\\tilde{v}\end{array}\right)$

with the domain $D(\mathcal{L}) = L^2(\Omega) \times W^{2,2}(\Omega)$ looks as on the picture.

Numerical simulations

What are the patterns, which we see in numerical simulations?

Our conjecture: there are singular patterns.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Shadow system

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Shadow problem

The solutions $(u^D, v^D) = (u^D(x, t), v^D(x, t))$ of

$$u_t = f(u, v),$$

 $v_t = D\Delta v + g(u, v)$

converge as $D \to \infty$ towards a solution

$$(u,\xi)=(u(x,t),\xi(t))$$

of the following shadow system

$$u_t = f(u, \xi),$$
 for $x \in \overline{\Omega}, t > 0$
 $\xi_t = \int_{\Omega} g(u(x, t), \xi(t)) dx$ for $t > 0$

in a bounded domain $\Omega \subset \mathbb{R}^n$ supplemented with initial data

$$u(x,0) = u_0(x), \qquad \xi(0) = \xi_0.$$

Instability of steady states

Theorem

Assume that a constant vector $(\bar{u}, \bar{\xi})$ is a solution of the initial-boundary value problem of the system

$$u_t = f(u,\xi),$$

$$\xi_t = \int_{\Omega} g(u(x,t),\xi(t)) dx,$$

which means that $f(\bar{u}, \bar{\xi}) = 0$ and $g(\bar{u}, \bar{\xi}) = 0$. If

 $f_u(\bar{u},\bar{\xi})>0,$

then $(\bar{u}, \bar{\xi})$ is an unstable solution of this initial-boundary value problem.

Reduced model of early carcinogenesis

$$u_t = \left(\frac{au\xi}{1+u\xi} - 1\right)u$$
$$\xi_t = -\xi - k\xi \int_{\Omega} u^2 \, dx + B$$

in a bounded set $\Omega \subset \mathbb{R}^n.$ We complete this system with nonnegative initial conditions

$$u(0,x) = u_0(x), \qquad \xi(0) = \xi_0.$$

- All nonnegative solutions are global-in-time.
- Space homogeneous solutions are uniformly bounded
- Blowup of some space **inhomogeneous** solutions appears when $t \rightarrow \infty$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Emergence of a single spike

・ロト ・ 日 ・ ・ ヨ ・

Competition of spikes

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Coexistence of spikes

<ロト <回ト < 注ト < 注ト

э

Plateau

- If u₀(x₁) = u₀(x₂) for some x₁ ≠ x₂, then u(x₁, t) = u(x₂, t) for all t ≥ 0, because both quantities u(x₁, t) and u(x₂, t) as functions of t satisfy the same Cauchy problem.
- Consequently, if the measure of Ω_{*} is positive, the function u(x, t) cannot escape to +∞ for all x ∈ Ω_{*} due to the boundedness of the mass.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Analysis of spike formation

Theorem

Let (u, ξ) be a nonnegative solution of the shadow problem with

• large a:
$$2(a - d) \ge 1$$

Let
$$rac{1}{2} \leq \lambda \leq 1 - rac{2a}{\kappa_0}$$
. Assume that $u_0 \in C(\Omega) \cap L^\infty(\Omega)$ and $\xi_0 \in \mathbb{R}$ satisfy

$$\xi_0 \int_{\Omega} u_0^2(x) \, dx > \lambda \kappa_0 \qquad \text{and} \qquad 0 < \xi_0 \leq (1-\lambda) \kappa_0$$

and $\Omega_*=\{x_*\in\Omega\,:\,u_0(x_*)=\max_{x\in\Omega}u_0(x)\}$ has measure zero. Then

$$\begin{aligned} \sup_{t>0} u(x_*, t) &= +\infty & \text{if } x_* \in \Omega_*, \\ \sup_{t>0} u(x, t) &< +\infty & \text{if } x \in \Omega \setminus \Omega_* \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main ideas of the proof

Lemma

Under the assumptions of the above Theorem, it holds

$$\xi(t)\int_{\Omega}u^2(x,t)\,dx>\lambda\kappa_0\qquad ext{and}\qquad 0<\xi(t)\leq (1-\lambda)\kappa_0$$

for all $t \geq 0$.

Lemma

Let the assumptions of the Theorem hold true. Assume that $x_* \in \Omega_*$ and suppose that $u_*(t) \equiv u(x_*, t) = \max_{x \in \Omega} u(x, t)$ is a bounded function for $t \geq 0$. Then, for each $x \in \Omega$ such that $u_0(x) < u_0(x_*)$ it holds $u(x, t) \to 0$ exponentially as $t \to \infty$.

Proof using equation for $\frac{u(x,t)}{u_*(x,t)}$.

• Open Question: How to show positivity of mass?

Conclusions and challenges

- Coupling a scalar reaction-diffusion equation to ODEs may lead to emergence of spatial patterns.
- Autocatalysis is a necessary and sufficient condition for Turing instability in such models; however it leads to instability of all Turing patterns.
- The solutions may exhibit dynamical patterns tending asymptotically to Dirac measures (diffusion-driven mass concentration).

・ロト・日本・モート モー うへぐ

• Models with DDI may also lead to bounded patterns with jump-discontinuity (due to the hysteresis effect)

Open questions and perspective:

- Mass concentration in the reaction-diffusion-ode model.
- Pattern selection.
- Identification of key players in real biological systems.

Thank you!

References

- A. Marciniak-Czochra, G. Karch and K. Suzuki (2013) Unstable patterns in reaction-diffusion model of early carcinogenesis. *J. Math. Pures Appl.* 99: 509–543.
- A. Marciniak-Czochra, G. Karch and K. Suzuki. Unstable patterns in autocatalytic reaction-diffusion-ODE systems. Submitted. Preprint available at http://arxiv.org/abs/1301.2002.
- A. Marciniak-Czochra, S. Härting, G. Karch and K. Suzuki. Dynamical spike solutions in a nonlocal model of pattern formation. Submitted. Preprint available at http://arxiv.org/abs/1307.6236
- S. Härting and A. Marciniak-Czochra (2013) Spike patterns in a reaction-diffusion-ode model with Turing instability. *Math. Meth. Appl. Sci.* 37:1377–1391.

- ロ ト - 4 回 ト - 4 □ - 4