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Reaction-diffusion-ode models
of biological processes



Receptor-based models

Models of biological tissues Macroscopic receptor-based models
Oy = DAu+f(u,v)
Oiv = g(u, V)

+ zero-flux boundary conditions
+ initial conditions
xe€QCRN, teRt

homogenisation

(rigorous)
Mechanisms of pattern formation

e What is the role of non-diffusing components ?

e Can models with only one diffusion exhibit patterns?



Classical concept of pattern formation
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Turing idea
Diffusion-driven instabilities (DDI) — Turing-type patterns

e DDI takes place when

e the kinetics system is asymptotically stable
e the complete system unstable for spatially non-homogeneous
perturbations

e Linear stability analysis

1 2
Alpm) =A— —Dpm®.
Y
A is Jacobian matrix at a steady state and p,> is a wavenumber obtained

from the Laplacian’s eigenproblem:

A><¢7m = _Mm2¢m in Q7
Onpm = 0



Dispersion relation

e Eigenvalues \ of A depend on the model parameters and the wave
number g2

e DDI condition for a 2-equation model det A(1,) > 0.
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e The dependence \(jm?) is called the dispersion relation.



How do patterns grow?

Examples in two-dimensional domain




Turing patterns

Definition
By Turing patterns we call the solutions of reaction-diffusion
equations that are

e stable,

e stationary,

e continuous,

e spatially heterogenous and

e arise due to the Turing instability (DDI) of a constant steady
state.



DDI in the model with 1 diffusion operator

e DDI condition: (—1)*det A < 0, where det A = det A — ’fy—f" det Aope

e Destabilisation of the constant stationary solution is caused by the
ODE subsystem



How does it work for two equations?

uy = f(u,v),

ve = DyAv + g(u,v)

v =0 x€d, t>0
u(x,0) = wo(x),

v(x,0) = v(x).

Theorem
Assume that the constant vector (T, V) is a (stationary) solution of the
initial-boundary value problem for this reaction-diffusion-ode system. If

fu(4,v) > 0,

then (&, v) is an unstable solution of this problem.

Autocatalysis leads to DDI.



Reaction-diffusion-ode system with DDI
leading to unbounded growth of solutions



Inspiring example: Model of early cancerogenesis

Surface concentrations:

growth factor
molecules

cells

e Cell proliferation is influenced by growth factor
o Growth factor is externally supplied or produced by the cells

e Growth factor diffuses along the structure formed by the cells and
binds to cell membrane receptors

A.M-C and M.Kimmel, Math. Meth. Mod. Appl. Sci, 2007,
A.M-C and M.Kimmel, Math. Mod. Natural Phenomena, 2008,



Basic model

Y
ug = ( “ _dc)ua
1+
Ve = —dpv + Pw — dv,
1
Wi = —Wyx — dgW — uzw+dv+/$0

for x € (0,1), t > 0 with the homogeneous Neumann boundary
conditions for the function w = w(x, t).

e The model has a positive spatially constant stationary solution
exhibiting DDI (the autocatalysis condition is fulfiled)

A.M-C, G.Karch, K.Suzuki, J.Math.Pures et Appl., 2013



Spatial profiles of the solutions




Random initial perturbation
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Goal: Understand what we see in simulations



Do we observe Turing patterns?

e Spatially homogeneous solutions are uniformly bounded

e The model has a positive spatially constant stationary solution
exhibiting DDI (the autocatalysis condition is fulfiled)

e We show that all Turing patterns are unstable.



Generic reaction-diffusion-ode system

uy = f(u, v), for xeQ, t>0
ve = DAv + g(u, v) for xeQ, t>0

in a bounded domain Q C R".
e Homogeneous Neumann boundary condition:

v =0 for x€0Q, t>0
e |nitial data:
u(x,0) = up(x), v(x,0) = vp(x).

e D>0

e Arbitrary Cl-nonlinearities f = f(u,v) and g = g(u, v).



Regular stationary solutions

Assume that we can solve the equation
fF(U(x), V(x)) =0

to have

for a Cl-function k = k(V).

Regular stationary solutions of

fF(U,V) =0,
DAV +g(U,V) =0
9V =0 xecoQ

satisfy the boundary value problem

DAV + h(V) =0,
0,V =0 on 09,

where h(V) = g(k(V), V).



Construction of patterns in one-dimensional domain

v \ e Energy equation 32> + H(V) = C,
c where V' = z.
H=H(w)
e All trajectories are symmetric with
respect to V-axis.
H(#) y ® The condition z(0) = z(T) is
o ) satisfied for a certain T < 0 if
z energy describes a close curve for a
2=+/2CHW) certain C € R.
% N ® Such closed curves exist only if the
Wi W o potential energy H(V) has a local
minimum.
2=— /2([C-HW))

We construct regular periodic patterns:

3Imodes



Which solutions are stable?

e Several nonconstant solutions for sufficiently small D
e As long as D > m?Dy there exists a solution with m peaks.

Free grovh factor
s o

Cells




Instability of stationary solutions

Theorem
Let (U, V) be a regular stationary solution satisfying the autocatalysis
assumption

f.(U(x), V(x)) >0 forall x € Q.

Then, (U, V) is an unstable solution.

The same mechanism which destabilizes constant
solutions of such models, destabilizes also non-constant
stationary solutions.



Linearisation and Spectral Mapping Theorem

Lemma
Consider the linear operator L given by

B (0N, [ fUV) KUV

v)  \ AV g.(U,V) &(U,V)
with homogeneous Neumann boundary condition 0,V = 0.
Then, the operator L with D(L) = L?(Q2) x W?2(Q) generates an

analytic semigroup {€t“};>q of linear operators on 2(Q) x [2(9),
which satisfies

<Y
N———

o(etf)\ {0} = et7(¥) for every t > 0.



Spectrum of L

Define the constants

Ao = inf £, (U(x), V(x)) >0 and No = sup f,(U(x), V(x)) >0,
xEN xEQ
The spectrum o (L) of the linear operator

c(2)=( )+ (200 XU (E)

with the domain D(L) = L*(Q) x W??(R) looks as on the picture.

\ c
5,0

spectral gap

<t =@




Numerical simulations

What are the patterns, which we see in numerical simulations?

o

Our conjecture: there are singular patterns.



Shadow system



Shadow problem
The solutions (u?, vP) = (uP(x, t), vP(x, t)) of

Uy = f(ua V)7
ve = DAv + g(u, v)

converge as D — oo towards a solution
(v,€) = (u(x, 1), &(t))
of the following shadow system
up = f(u,§), for x€Q, t>0
& = /Qg(u(x, t),&(t)) dx for t>0
in a bounded domain Q C R” supplemented with initial data

u(x,0) = w(x),  £(0) = &-



Instability of steady states

Theorem
Assume that a constant vector (u,£) is a solution of the initial-boundary
value problem of the system

uz - f(u,ﬁ),
3 / g (u(x. 1), £(1)) dx,

which means that f(u,&) = 0 and g(1,&) = 0.
If
f,(1,&) > 0,

then (@i, €) is an unstable solution of this initial-boundary value problem.



Reduced model of early carcinogenesis

e = (1?:35 *1)“

5t:—5—k§/ﬂu2dx+s

in a bounded set Q C R". We complete this system with nonnegative
initial conditions

U(O’X) = UO(X)v 5(0) = &o.

e All nonnegative solutions are global-in-time.
e Space homogeneous solutions are uniformly bounded

e Blowup of some space inhomogeneous solutions appears when
t — 00.
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Emergence of a single spike




Competition of spikes




Coexistence of spikes
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o If up(x1) = ug(x2) for some x; # xo, then u(xi, t) = u(xe, t) for all
t > 0, because both quantities u(xy, t) and u(xz, t) as functions of ¢
satisfy the same Cauchy problem.

e Consequently, if the measure of €, is positive, the function u(x, t)
cannot escape to +oo for all x € €, due to the boundedness of the

mass.



Analysis of spike formation

Theorem
Let (u,&) be a nonnegative solution of the shadow problem with

o Jargea:2(a—d)>1

e Jarge constant ky: Ko > 4a.

1 2
Let 5 <A<1- —a. Assume that ug € C(Q)NL>®(Q) and & € R satisfy
Ko

go/ wB(x)dx > kg and  0< & < (1— N)ko
Q

and Q. = {x. € Q : up(xx) = Maxxeq Uo(x)} has measure zero. Then

sup u(xs, t) = 400 if x, € Q,
>0
sup u(x, t) < 400 if xeQ\ Q.

t>0



Main ideas of the proof

Lemma
Under the assumptions of the above Theorem, it holds

g(t)/ﬂlﬂ(x, t)dx > kg and 0 < &(t) < (1—N)ko

for all t > 0.

Lemma

Let the assumptions of the Theorem hold true. Assume that x, € €, and
suppose that u.(t) = u(x., t) = maxyeq u(x, t) is a bounded function for
t > 0. Then, for each x € Q such that ug(x) < up(x.) it holds

u(x,t) — 0 exponentially as t — oc.

u(x,t)

Proof using equation for TRERIR

e Open Question: How to show positivity of mass?



Conclusions and challenges
e Coupling a scalar reaction-diffusion equation to ODEs may lead to
emergence of spatial patterns.

e Autocatalysis is a necessary and sufficient condition for Turing
instability in such models; however it leads to instability of all
Turing patterns.

e The solutions may exhibit dynamical patterns tending asymptotically
to Dirac measures (diffusion-driven mass concentration).

e Models with DDI may also lead to bounded patterns with
jump-discontinuity (due to the hysteresis effect)

Open questions and perspective:

e Mass concentration in the reaction-diffusion-ode model.
e Pattern selection.

o |dentification of key players in real biological systems.



Thank you!
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