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Reaction-diffusion-ode models
of biological processes



Receptor-based models

Models of biological tissues Macroscopic receptor-based models

∂tu = D∆u + f (u, v)

∂tv = g(u, v)

+ zero-flux boundary conditions
+ initial conditions
x ∈ Ω ⊂ RN , t ∈ R+

homogenisation

(rigorous)

Mechanisms of pattern formation

• What is the role of non-diffusing components ?

• Can models with only one diffusion exhibit patterns?



Classical concept of pattern formation



Turing idea

Diffusion-driven instabilities (DDI) → Turing-type patterns

• DDI takes place when
• the kinetics system is asymptotically stable
• the complete system unstable for spatially non-homogeneous

perturbations

• Linear stability analysis

Ã(µm) = A− 1

γ
Dµm

2.

A is Jacobian matrix at a steady state and µm
2 is a wavenumber obtained

from the Laplacian’s eigenproblem:

4xφm = −µm
2φm in Ω,

∂nφm = 0



Dispersion relation

• Eigenvalues λ of Ã depend on the model parameters and the wave
number µm

2.

• DDI condition for a 2-equation model det Ã(µm) > 0.
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• The dependence λ(µm
2) is called the dispersion relation.



How do patterns grow?

Examples in two-dimensional domain
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Turing patterns

Definition
By Turing patterns we call the solutions of reaction-diffusion
equations that are

• stable,

• stationary,

• continuous,

• spatially heterogenous and

• arise due to the Turing instability (DDI) of a constant steady
state.



DDI in the model with 1 diffusion operator

• DDI condition: (−1)k det Ã < 0, where det Ã = det A− µ2
m

γ det AODE

• Destabilisation of the constant stationary solution is caused by the
ODE subsystem



How does it work for two equations?

ut = f (u, v),

vt = Dv ∆v + g(u, v)

∂nv = 0 x ∈ ∂Ω, t > 0

u(x , 0) = u0(x),

v(x , 0) = v0(x).

Theorem
Assume that the constant vector (ū, v̄) is a (stationary) solution of the
initial-boundary value problem for this reaction-diffusion-ode system. If

fu(ū, v̄) > 0,

then (ū, v̄) is an unstable solution of this problem.

Autocatalysis leads to DDI.



Reaction-diffusion-ode system with DDI
leading to unbounded growth of solutions



Inspiring example: Model of early cancerogenesis

• Cell proliferation is influenced by growth factor

• Growth factor is externally supplied or produced by the cells

• Growth factor diffuses along the structure formed by the cells and
binds to cell membrane receptors

A.M-C and M.Kimmel, Math. Meth. Mod. Appl. Sci, 2007,
A.M-C and M.Kimmel, Math. Mod. Natural Phenomena, 2008, ...



Basic model

ut =
( a v

u

1 + v
u

− dc

)
u,

vt = −dbv + u2w − dv ,

wt =
1

γ
wxx − dg w − u2w + dv + κ0

for x ∈ (0, 1), t > 0 with the homogeneous Neumann boundary
conditions for the function w = w(x , t).

• The model has a positive spatially constant stationary solution
exhibiting DDI (the autocatalysis condition is fulfiled)

A.M-C, G.Karch, K.Suzuki, J.Math.Pures et Appl., 2013



Spatial profiles of the solutions



Random initial perturbation

Goal: Understand what we see in simulations



Do we observe Turing patterns?

• Spatially homogeneous solutions are uniformly bounded

• The model has a positive spatially constant stationary solution
exhibiting DDI (the autocatalysis condition is fulfiled)

• We show that all Turing patterns are unstable.



Generic reaction-diffusion-ode system

ut = f (u, v), for x ∈ Ω, t > 0

vt = D∆v + g(u, v) for x ∈ Ω, t > 0

in a bounded domain Ω ⊂ Rn.

• Homogeneous Neumann boundary condition:

∂nv = 0 for x ∈ ∂Ω, t > 0

• Initial data:

u(x , 0) = u0(x), v(x , 0) = v0(x).

• D > 0

• Arbitrary C 1-nonlinearities f = f (u, v) and g = g(u, v).



Regular stationary solutions
Assume that we can solve the equation

f (U(x),V (x)) = 0

to have
U(x) = k(V (x))

for a C 1-function k = k(V ).
Regular stationary solutions of

f (U,V ) = 0,

D∆V + g(U,V ) = 0

∂nV = 0 x ∈ ∂Ω

satisfy the boundary value problem

D∆V + h(V ) = 0,

∂nV = 0 on ∂Ω,

where h(V ) = g(k(V ),V ).



Construction of patterns in one-dimensional domain

• Energy equation 1
2
z2 + H(V ) = C ,

where V ′ = z .

• All trajectories are symmetric with
respect to V -axis.

• The condition z(0) = z(T ) is
satisfied for a certain T < 0 if
energy describes a close curve for a
certain C ∈ R.

• Such closed curves exist only if the
potential energy H(V ) has a local
minimum.

We construct regular periodic patterns:



Which solutions are stable?

• Several nonconstant solutions for sufficiently small D

• As long as D > m2D0 there exists a solution with m peaks.



Instability of stationary solutions

Theorem
Let (U,V ) be a regular stationary solution satisfying the autocatalysis
assumption

fu(U(x),V (x)) > 0 for all x ∈ Ω.

Then, (U,V ) is an unstable solution.

The same mechanism which destabilizes constant
solutions of such models, destabilizes also non-constant
stationary solutions.



Linearisation and Spectral Mapping Theorem

Lemma
Consider the linear operator L given by

L
(

ũ
ṽ

)
≡
(

0
∆ṽ

)
+

(
fu(U,V ) fv (U,V )
gu(U,V ) gv (U,V )

)(
ũ
ṽ

)
with homogeneous Neumann boundary condition ∂ν ṽ = 0.

Then, the operator L with D(L) = L2(Ω)×W 2,2(Ω) generates an
analytic semigroup {etL}t≥0 of linear operators on L2(Ω)× L2(Ω),
which satisfies

σ(etL) \ {0} = etσ(L) for every t ≥ 0.



Spectrum of L
Define the constants

λ0 = inf
x∈Ω

fu
`
U(x),V (x)

´
> 0 and Λ0 = sup

x∈Ω

fu
`
U(x),V (x)

´
> 0,

The spectrum σ(L) of the linear operator

L
„

ũ
ṽ

«
≡

„
0

∆ṽ

«
+

„
fu(U,V ) fv (U,V )
gu(U,V ) gv (U,V )

« „
ũ
ṽ

«
with the domain D(L) = L2(Ω)×W 2,2(Ω) looks as on the picture.



Numerical simulations

What are the patterns, which we see in numerical simulations?

Our conjecture: there are singular patterns.



Shadow system



Shadow problem

The solutions (uD , vD) = (uD(x , t), vD(x , t)) of

ut = f (u, v),

vt = D∆v + g(u, v)

converge as D →∞ towards a solution

(u, ξ) = (u(x , t), ξ(t))

of the following shadow system

ut = f (u, ξ), for x ∈ Ω, t > 0

ξt =

∫
Ω

g
(
u(x , t), ξ(t)

)
dx for t > 0

in a bounded domain Ω ⊂ Rn supplemented with initial data

u(x , 0) = u0(x), ξ(0) = ξ0.



Instability of steady states

Theorem
Assume that a constant vector (ū, ξ̄) is a solution of the initial-boundary
value problem of the system

ut = f (u, ξ),

ξt =

∫
Ω

g
(
u(x , t), ξ(t)

)
dx ,

which means that f (ū, ξ̄) = 0 and g(ū, ξ̄) = 0.
If

fu(ū, ξ̄) > 0,

then (ū, ξ̄) is an unstable solution of this initial-boundary value problem.



Reduced model of early carcinogenesis

ut =
( auξ

1 + uξ
− 1
)

u

ξt = −ξ − kξ

∫
Ω

u2 dx + B

in a bounded set Ω ⊂ Rn. We complete this system with nonnegative
initial conditions

u(0, x) = u0(x), ξ(0) = ξ0.

• All nonnegative solutions are global-in-time.

• Space homogeneous solutions are uniformly bounded

• Blowup of some space inhomogeneous solutions appears when
t →∞.



Emergence of a single spike



Competition of spikes



Coexistence of spikes



Plateau

• If u0(x1) = u0(x2) for some x1 6= x2, then u(x1, t) = u(x2, t) for all
t ≥ 0, because both quantities u(x1, t) and u(x2, t) as functions of t
satisfy the same Cauchy problem.

• Consequently, if the measure of Ω∗ is positive, the function u(x , t)
cannot escape to +∞ for all x ∈ Ω∗ due to the boundedness of the
mass.



Analysis of spike formation

Theorem
Let (u, ξ) be a nonnegative solution of the shadow problem with

• large a: 2(a− d) ≥ 1

• large constant κ0: κ0 ≥ 4a.

Let
1

2
≤ λ ≤ 1− 2a

κ0
. Assume that u0 ∈ C (Ω)∩L∞(Ω) and ξ0 ∈ R satisfy

ξ0

∫
Ω

u2
0(x) dx > λκ0 and 0 < ξ0 ≤ (1− λ)κ0

and Ω∗ = {x∗ ∈ Ω : u0(x∗) = maxx∈Ω u0(x)} has measure zero. Then

sup
t>0

u(x∗, t) = +∞ if x∗ ∈ Ω∗,

sup
t>0

u(x , t) < +∞ if x ∈ Ω \ Ω∗



Main ideas of the proof

Lemma
Under the assumptions of the above Theorem, it holds

ξ(t)

∫
Ω

u2(x , t) dx > λκ0 and 0 < ξ(t) ≤ (1− λ)κ0

for all t ≥ 0.

Lemma
Let the assumptions of the Theorem hold true. Assume that x∗ ∈ Ω∗ and
suppose that u∗(t) ≡ u(x∗, t) = maxx∈Ω u(x , t) is a bounded function for
t ≥ 0. Then, for each x ∈ Ω such that u0(x) < u0(x∗) it holds
u(x , t)→ 0 exponentially as t →∞.

Proof using equation for u(x,t)
u∗(x,t) .

• Open Question: How to show positivity of mass?



Conclusions and challenges

• Coupling a scalar reaction-diffusion equation to ODEs may lead to
emergence of spatial patterns.

• Autocatalysis is a necessary and sufficient condition for Turing
instability in such models; however it leads to instability of all
Turing patterns.

• The solutions may exhibit dynamical patterns tending asymptotically
to Dirac measures (diffusion-driven mass concentration).

• Models with DDI may also lead to bounded patterns with
jump-discontinuity (due to the hysteresis effect)

Open questions and perspective:

• Mass concentration in the reaction-diffusion-ode model.

• Pattern selection.

• Identification of key players in real biological systems.



Thank you!
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