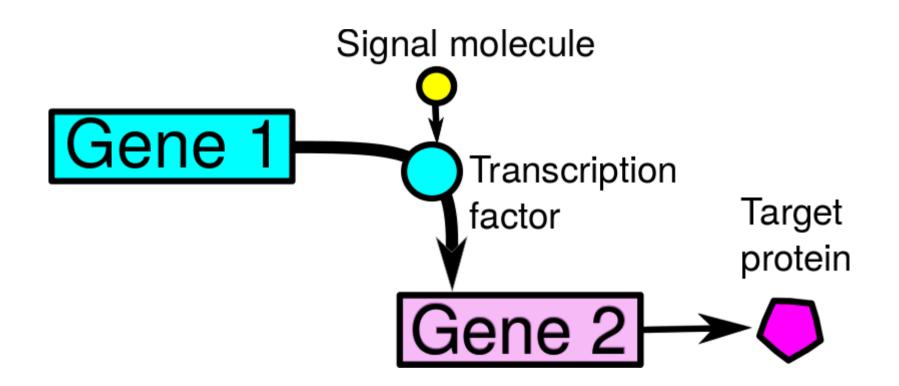
Binary to graded response conversion in autoregulated genes: transcriptional leakage vs. noise

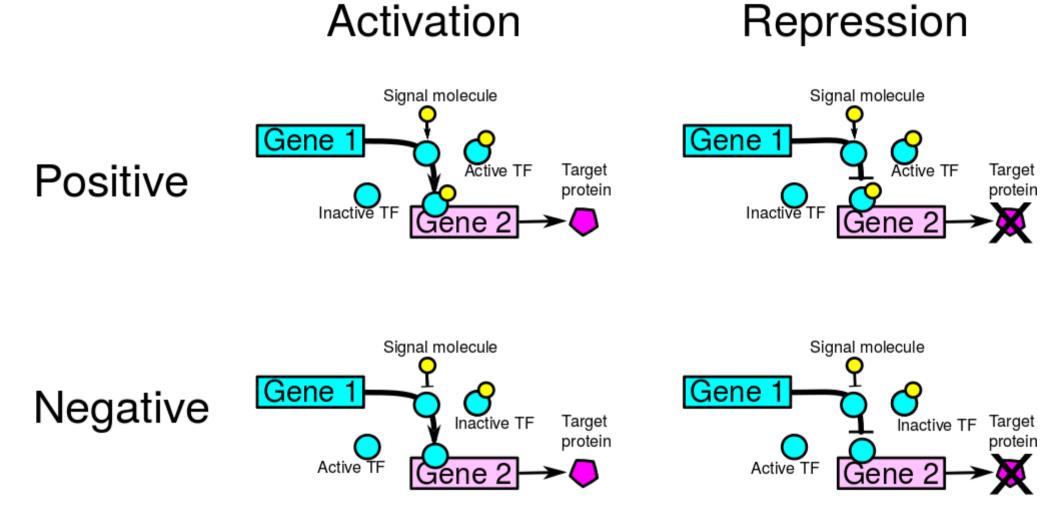
Anna Ochab-Marcinek Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland Micro and Macro Systems in Life Sciences 8 - 12 June 2015, Będlewo

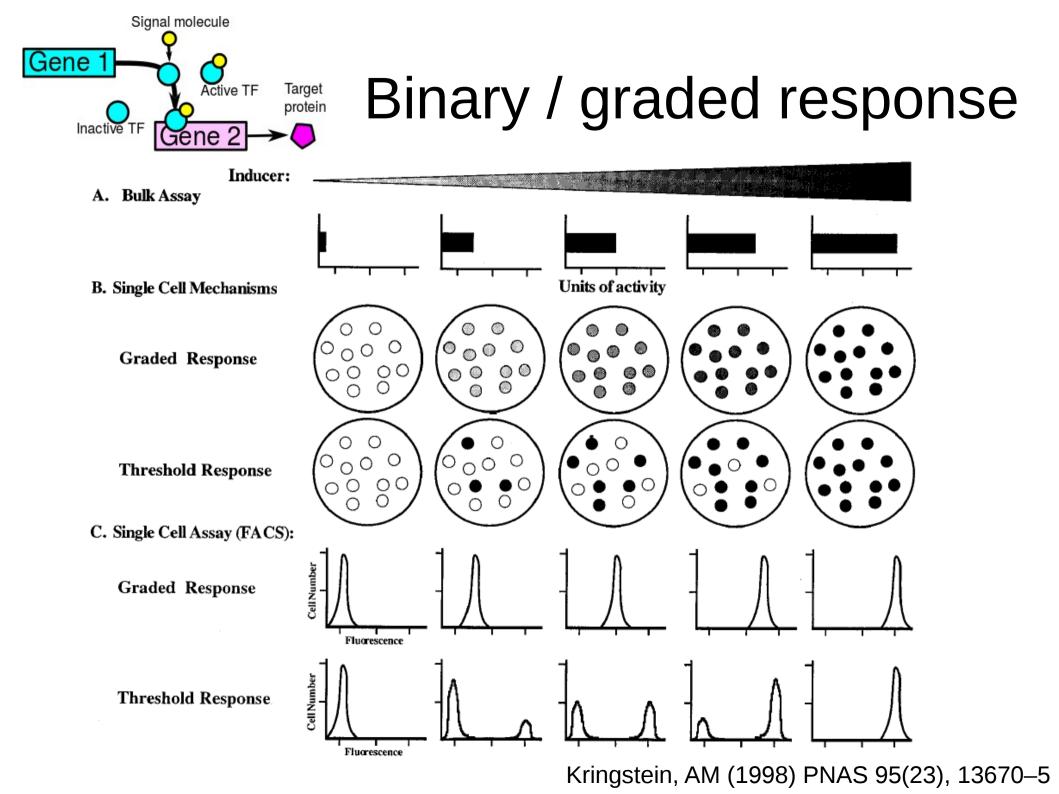
Anna Ochab-Marcinek Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland

Binary to graded response conversion in autoregulated genes: transcriptional leakage vs. noise

Anna Ochab-Marcinek Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland Micro and Macro Systems in Life Sciences 8 - 12 June 2015, Będlewo



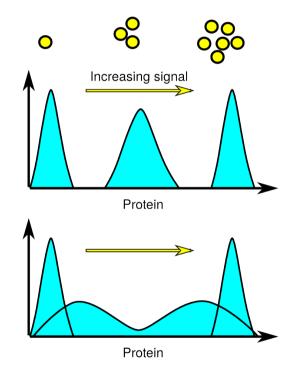




Possible functions of binary/graded responses

• Graded: Precise

• Binary: Bet hedging

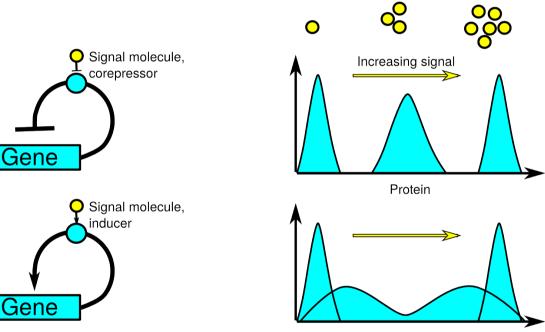


Self-regulation

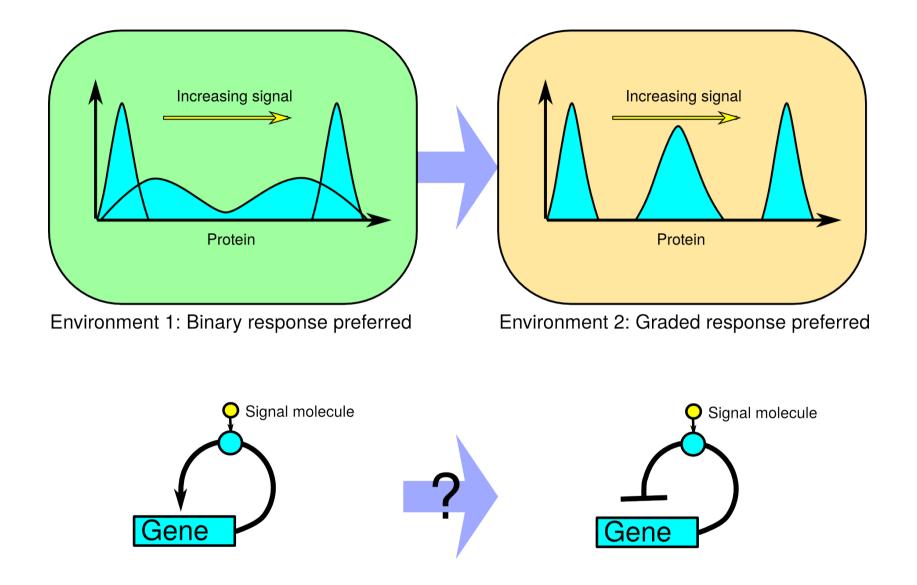
Common knowledge:

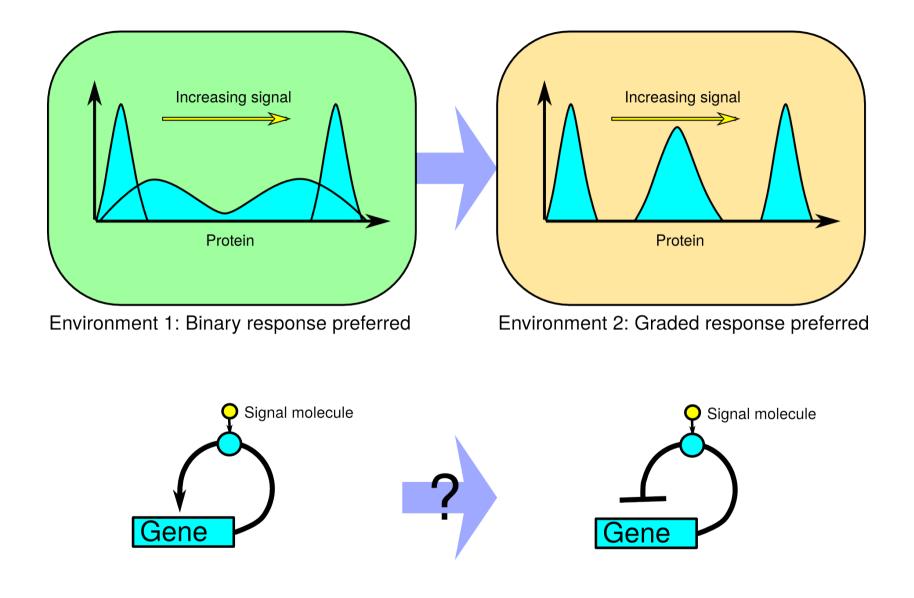
Negative autoregulation → unimodal distributions → graded response

Positive autoregulation → bimodal distributions → binary response?

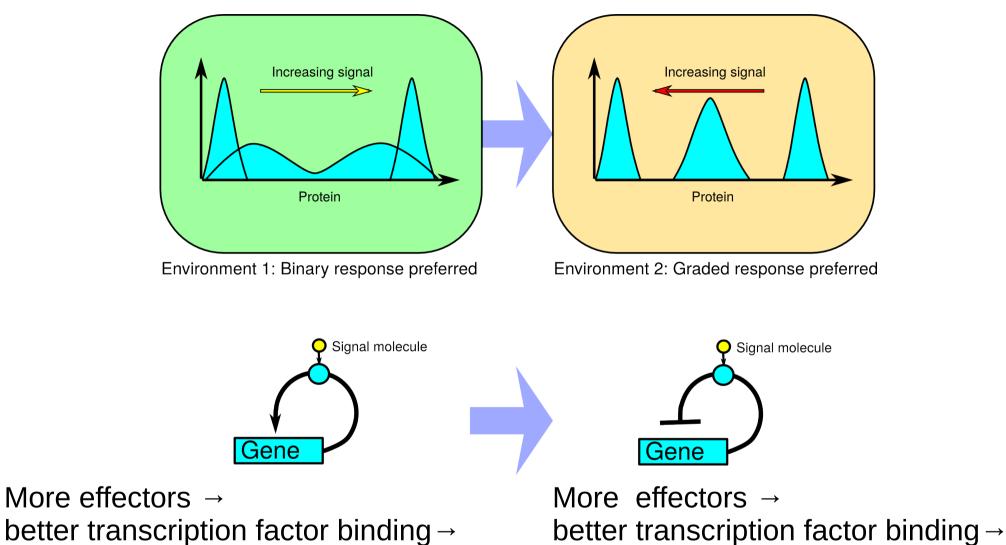


Protein



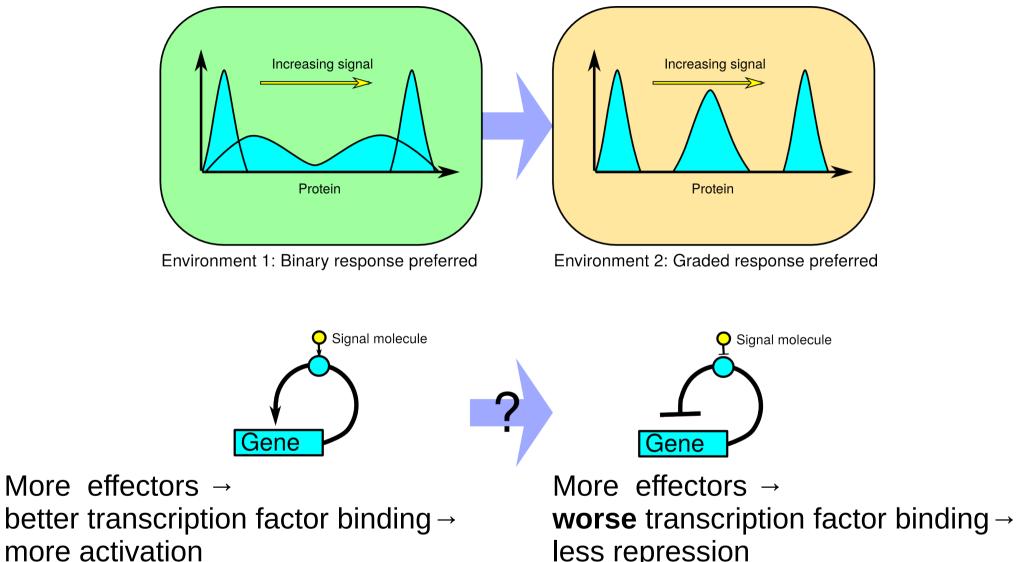


Not so easy!

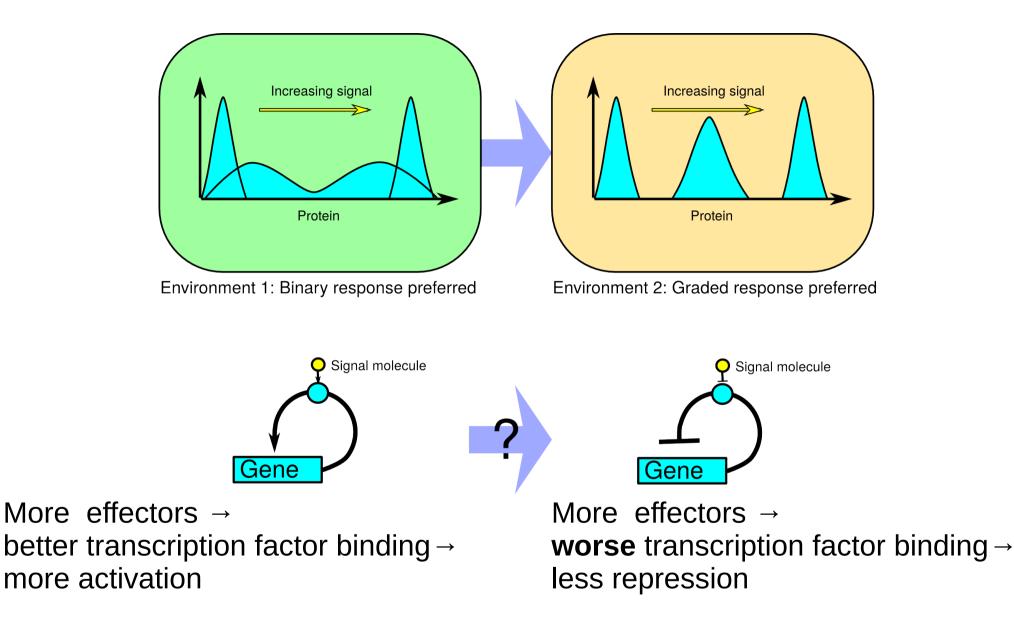


more activation

more repression



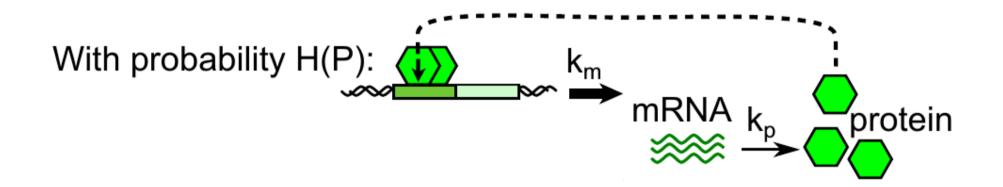
less repression



Multiple mutations needed:

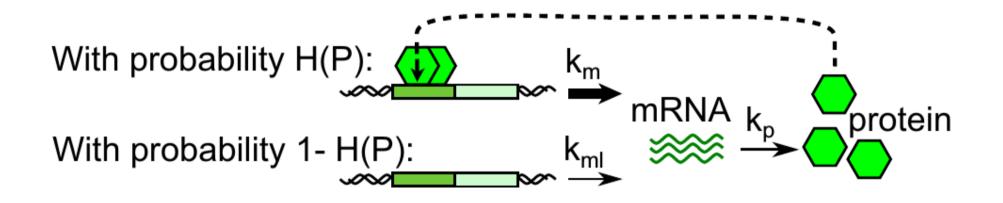
- Transcription factor: Activator \rightarrow repressor
- Effector: Inducer → corepressor

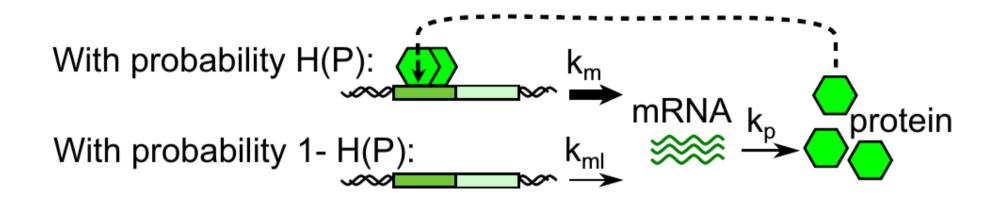
Transcriptional leakage (basal expression)



Ochab-Marcinek, Tabaka (2015) Phys Rev E, 91, 012704

Transcriptional leakage (basal expression)





- No tight control over the promoter.
- Some level of transcription is maintained even when the promoter is in the *off* state.
- To date, the role of transcriptional leakage has been underappreciated.
- Most often described as unfavorable (for an experimenter).
- Is it favorable for cells?

Deterministic description of an autoregulated gene

• Rate equations:

$$\frac{dM}{dt} = k_m h(\mathbf{P}) - k_{dm} M, \qquad \frac{dP}{dt} = k_p M - k_{dp} P$$

• Transcription rate: $h(P) = k_m H(P) + k_{ml}(1 - H(P)) =$

$$=H(P)\left(1-\frac{k_{ml}}{k_m}\right)+\frac{k_{ml}}{k_m}=$$
$$=H(P)(1-\epsilon)+\epsilon$$

• Transcription factor binding governed by Hill kinetics:

$$H(P) = \frac{1}{1 + cP^n}$$

Hill / Michaelis-Menten kinetics

Repression: Transcription when the operator is free

$$\frac{dM}{dt} = k_m O - k_{dm} M$$

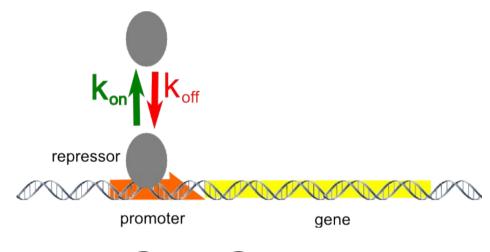
O: probability that the operator is free

Hill / Michaelis-Menten kinetics

O: probability that the operator is free OR: probability that the operator is occupied At steady state:

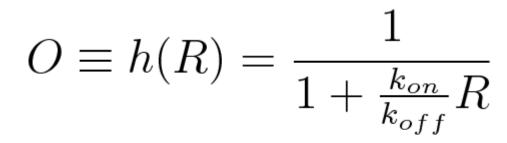
$$k_{on} \cdot R \cdot O = k_{off} \cdot O_R \quad \rightarrow \quad O_R = \frac{k_{on}}{k_{off}} R \cdot O$$

Hill / Michaelis-Menten kinetics



 $O + O_R = 1$

$$O\left(1 + \frac{k_{on}}{k_{off}}R\right) = 1$$



Hill kinetics, n binding sites

Detailed balance

 $k_{\text{on}}^1 R \cdot O = k_{\text{off}}^1 RO, \quad \dots, \quad k_{\text{on}}^n R \cdot R_{n-1}O = k_{\text{off}}^n R_n O$

• Probabilities sum up to 1

$$O + R \cdot O \frac{k_{\text{on}}^1}{k_{\text{off}}^1} + \ldots + R \cdot R_{n-1} O \frac{k_{\text{on}}^n}{k_{\text{off}}^n} = 1$$

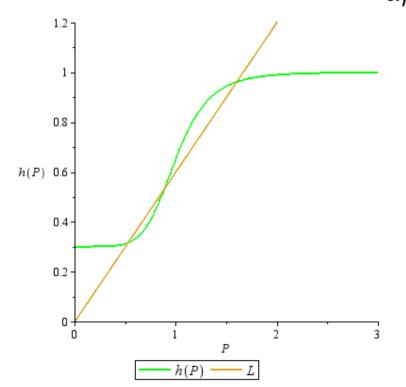
- Full dose-response function $h(R) = \left(1 + \frac{k_{\text{on}}^{1}}{k_{\text{off}}^{1}}R + \dots + \frac{k_{\text{on}}^{1} \cdot \dots \cdot k_{\text{on}}^{n}}{k_{\text{off}}^{1} \cdot \dots \cdot k_{\text{off}}^{n}}R^{n}\right)^{-1}$
- At strong cooperativity, Hill function: $h(R) = \left(1 + \frac{k_{\text{on}}^1 \cdot \ldots \cdot k_{\text{on}}^n}{k_{\text{off}}^1 \cdot \ldots \cdot k_{\text{off}}^n} R^n\right)^{-1}$

Deterministic description of an autoregulated gene

• Rate equations:

$$\frac{dM}{dt} = k_m h(\mathbf{P}) - k_{dm} M, \qquad \frac{dP}{dt} = k_p M - k_{dp} P$$

• Steady states: $H(P)(1-\epsilon) + \epsilon = \frac{1}{\alpha\beta}P$ $\alpha = k_m/k_{dp}$ $\beta = k_p/k_{dm}$



$$\frac{\partial p(P)}{\partial t} = \frac{\partial}{\partial P} \left[k_{dp} \ P \ p(P) \right] + k_m \int_0^P dP' \ w(P, P') \ p(P')$$

- Hybrid model (Friedman, PRL 2006)
- Deterministic degradation
- Production in stochastic bursts
- Exponential distribution of burst sizes

• Steady state solution with leakage (Friedman, PRL 2006; Ochab-Marcinek, Tabaka, PRE 2015):

$$p(P) = AP^{-1}e^{-P/\beta}e^{\alpha \int dP h(P)/P}$$
$$= AP^{\alpha - 1}e^{-P/\beta}H(P)^{\alpha(1 - \epsilon)/n}$$

 Maxima and minima given by an analogous geometric construction

$$H(P)(1-\epsilon) + \epsilon = \frac{1}{\alpha\beta}P + \frac{1}{\alpha}$$

• Steady state solution with leakage (Friedman, PRL 2006; Ochab-Marcinek, Tabaka, PRE 2015):

$$p(P) = AP^{-1}e^{-P/\beta}e^{\alpha \int dP h(P)/P}$$
$$= AP^{\alpha - 1}e^{-P/\beta}H(P)^{\alpha(1 - \epsilon)/n}$$

• Maxima and minima given by an analogous geometric construction

$$H(P)(1-\epsilon) + \epsilon = \frac{1}{\alpha\beta}P + \frac{1}{\alpha}$$

Noise term

• Steady state solution with leakage (Friedman, PRL 2006; Ochab-Marcinek, Tabaka, PRE 2015):

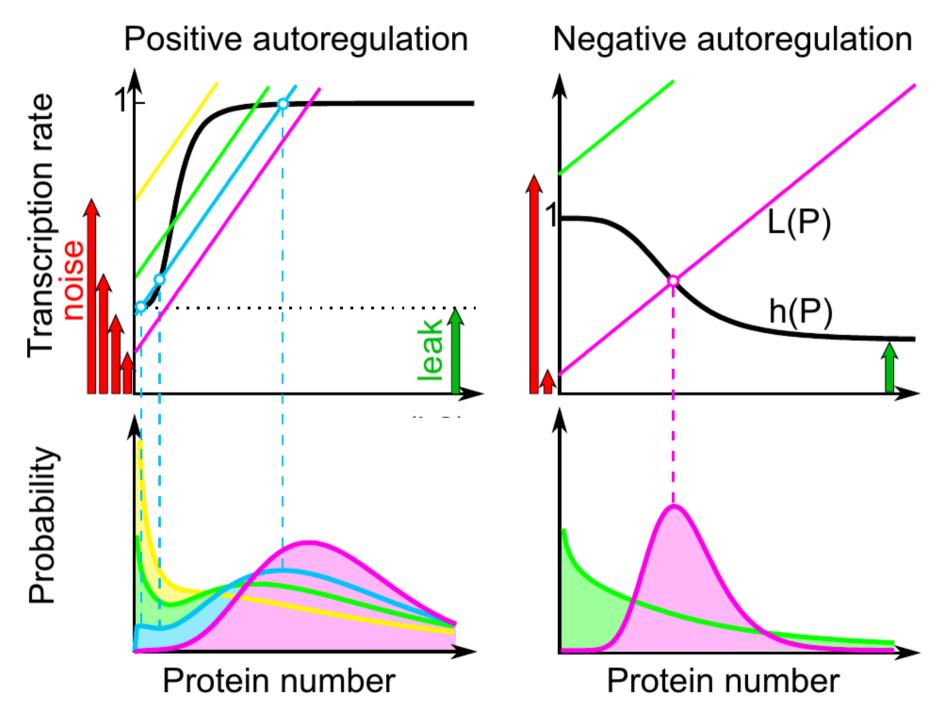
$$p(P) = AP^{-1}e^{-P/\beta}e^{\alpha \int dP h(P)/P}$$
$$= AP^{\alpha - 1}e^{-P/\beta}H(P)^{\alpha(1 - \epsilon)/n}$$

 Maxima and minima given by an analogous geometric construction

$$H(P)(1-\epsilon) + \epsilon = \frac{1}{\alpha\beta}P + \frac{1}{\alpha}$$

Noise term

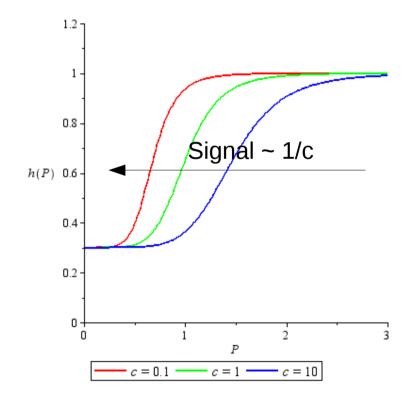
 $\alpha = k_m/k_{dp}$ Maximal frequency of protein bursts (when gene is at its maximum espression)



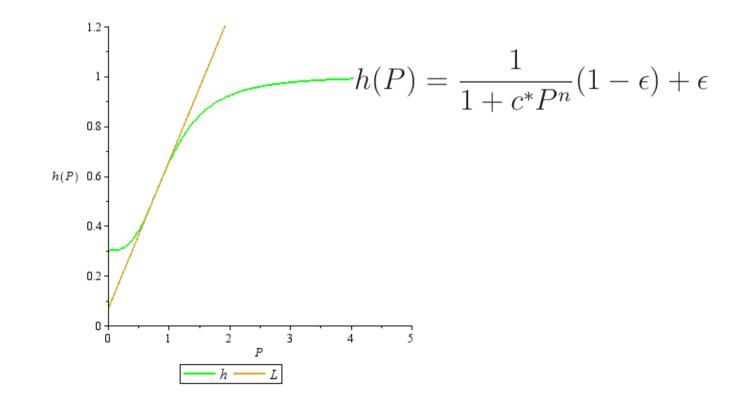
Ochab-Marcinek, Tabaka (2015) Phys Rev E, 91, 012704

How signal changes the Hill function

• Slope increases as c decreases $H(P) = \frac{1}{1 + cP^n}$, n<0

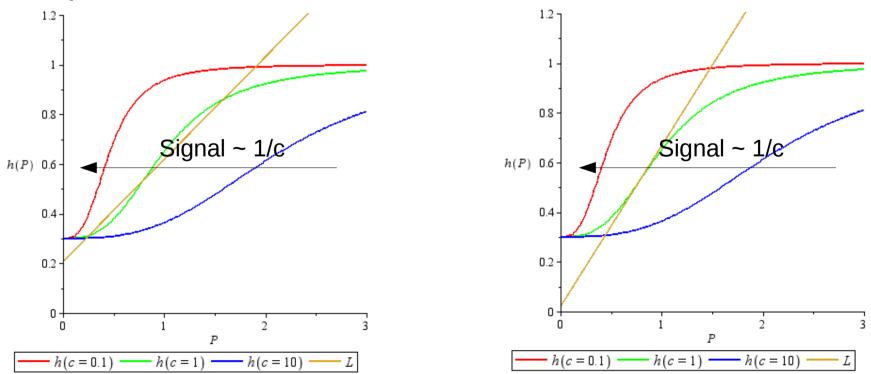


- We have certain α , β such that they define L(P) = $\frac{1}{\alpha\beta}P + \frac{1}{\alpha}$
- There exists c=c* such that L(P) intersects h(P) in its inflection point



Binary or graded response

- L(P) intersects h(P) in its inflection point
- L(P) slope < h(P) slope in inflection point \rightarrow binary response
- L(P) slope > h(P) slope in inflection point \rightarrow graded response



• At c=c*, L(P) intersects h(P) in its inflection point P_p

$$h(P_p, c^*) = \frac{1}{\alpha\beta} P_p + \frac{1}{\alpha}$$
$$\frac{d}{dP_p} h(P_p, c^*) < \frac{1}{\alpha\beta}$$

- \leftarrow intersection at P_p
- L(P) slope > h(P) slope
 in inflection point

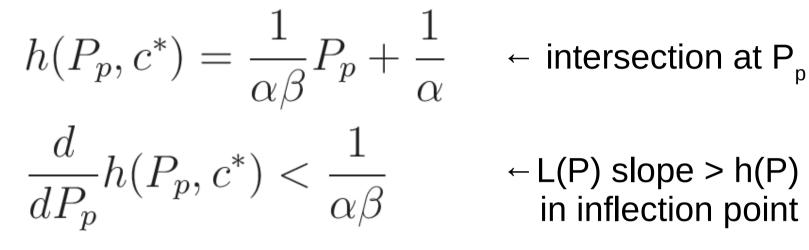
Nice properties of Hill function

$$H(P) = \frac{1}{1 + cP^n}$$
 $h(P) = H(P)(1 - \epsilon) + \epsilon$

• Inflection point:
$$P_p = \left(\frac{n-1}{c(n+1)}\right)^{1/n}$$

• Value at inflection point: $H(P_p) = \frac{n+1}{2n}$

• Slope at inflection point: $H'(P_p) = -\frac{n^2 - 1}{4n P_p}$



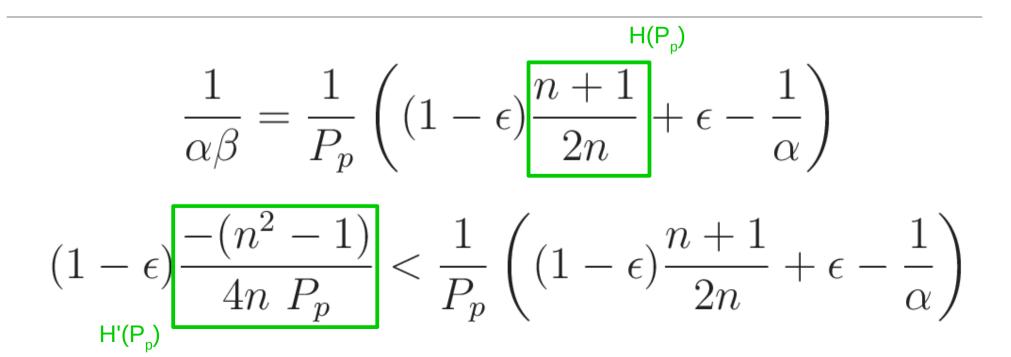
- ← L(P) slope > h(P) slope in inflection point

Dependence on β , c* and P_n will disappear!

$$h(P_p, c^*) = \frac{1}{\alpha\beta} P_p + \frac{1}{\alpha}$$
$$\frac{d}{dP_p} h(P_p, c^*) < \frac{1}{\alpha\beta}$$

$$\leftarrow$$
 intersection at P_p

← L(P) slope > h(P) slope in inflection point



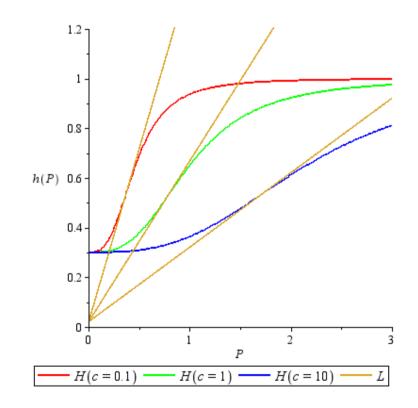
$$h(P_p, c^*) = \frac{1}{\alpha\beta} P_p + \frac{1}{\alpha}$$
$$\frac{d}{dP_p} h(P_p, c^*) < \frac{1}{\alpha\beta}$$

- \leftarrow intersection at P_p
 - ← L(P) slope > h(P) slope in inflection point

$$\frac{1}{\alpha\beta} = \frac{1}{P_p} \left((1-\epsilon)\frac{n+1}{2n} + \epsilon - \frac{1}{\alpha} \right)$$
$$(1-\epsilon)\frac{-(n^2-1)}{4n} < \frac{1}{R_p} \left((1-\epsilon)\frac{n+1}{2n} + \epsilon - \frac{1}{\alpha} \right)$$

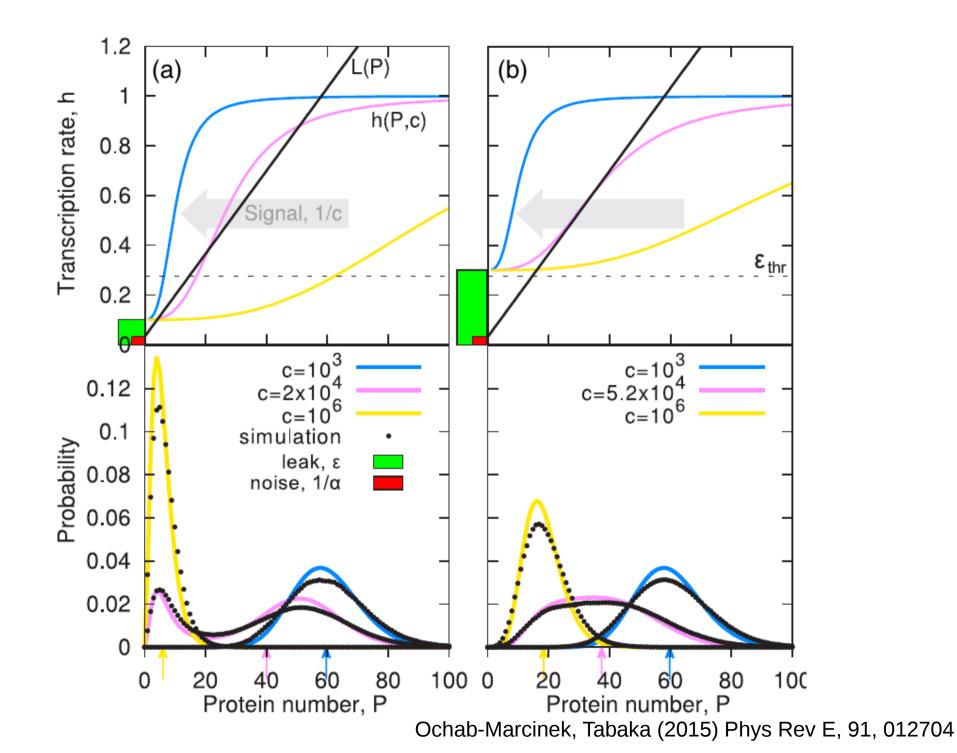
One more nice property of Hill function

• Tangents to Hill function in its inflection point always meet at the same point



$$\epsilon > \frac{1}{\alpha} \frac{(-4n)}{(n-1)^2} + \frac{(n+1)^2}{(n-1)^2} \equiv \epsilon_{thr}$$

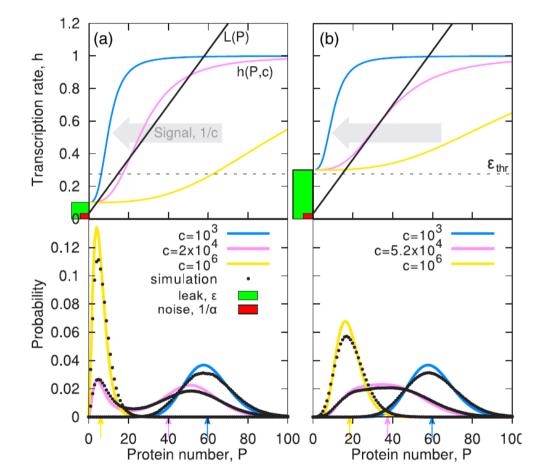
- If transcriptional leakage ϵ is greater than the threshold ϵ_{thr} , then the positively autoregulated gene will produce a graded response.
- For the leakage below that threshold, the response will be binary.



In a positively autoregulated gene, leakage acts against noise

$$\epsilon > \frac{1}{\alpha} \frac{(-4n)}{(n-1)^2} + \frac{(n+1)^2}{(n-1)^2} \equiv \epsilon_{thr}$$

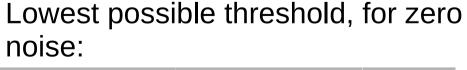
- Increasing noise induces binary response
- Increasing leakage recovers graded response



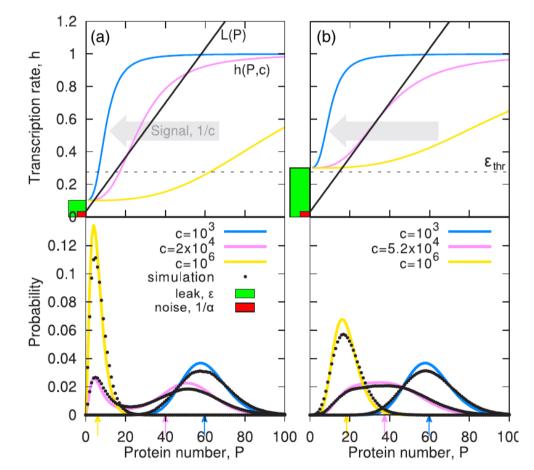
In a positively autoregulated gene, leakage acts against noise

$$\epsilon > \frac{1}{\alpha} \frac{(-4n)}{(n-1)^2} + \frac{(n+1)^2}{(n-1)^2} \equiv \epsilon_{thr}$$

- Low cooperativity: Low conversion threshold, low noise needed to obtain graded response
- High cooperativity: High conversion threshold, strong leakage needed to obtain graded response



n	-2	-3	-4	-6
8 _{thr}	0.11	0.25	0.36	0.51



Ochab-Marcinek, Tabaka (2015) Phys Rev E, 91, 012704

Summary

- Change in leaky transcription: Single mutations in the promoter (E.g. influencing RNA polymerase recruitment or binding of other TFs)
- Conversion from positive to negative autoregulation: Multiple mutations (activator → repressor, inducer → corepressor)
- Existence of leaky transcription can be an evolutionary adaptation which facilitates conversion between binary and graded response to signal

Acknowledgements

- Marcin Tabaka, PhD, Jakub Jędrak, PhD, Institute of Physical Chemistry, Polish Academy of Sciences
- Polish Ministry of Science Iuventus Plus grant no. 0501/IP1/2013/72

Ministry of Science and Higher Education

Republic of Poland