Somatic growth dilution

Toxin predator-prey model under stoichiometric constraints

Angela Peace 1 & Hao Wang 2

¹National Institute for Mathematical and Biological Synthesis, University of Tennessee, U.S.A.

²Center for Mathematical Biology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada

Outline

- Mercury as a toxin and bioaccumulation
- Model formulation: Ecotoxicology and Ecological Stoichiometry
- Model parameterization
- Basic model analysis
- Numerical simulations and bifurcation analysis

Basic ecotoxicology model Wang et al. 1996

uptake from water

uptake from consuming prey

loss due to efflux & growth

- v predator body burden
- a₂ toxin uptake rate
- T environmental toxin conc.
- *u* prey body burden

- ξ toxin assimilation efficiency
- f predator's ingestion rate
- σ_2 toxin efflux rate
- g predator's growth rate

Somatic growth dilution

Predator experiences a greater than proportional gain in biomass relative to MeHg under high growth conditions.

Karimi et al. 2007 showed that *Daphnia* grown on high quality food had 3.5 times higher growth rates and lower MeHg body burden

Ecological Stoichiometry and Ecotoxicology

Can Ecological Stoichiometry help improve testing protocols for assessing risk of exposures?

Ecological Stoichiometry and Ecotoxicology

Can Ecological Stoichiometry help improve testing protocols for assessing risk of exposures?

Goal: How does MeHg bioaccumulate under stoichiometric constraints?

 Algae^*

Daphnia

- Model the trophic transfer of MeHg in aquatic food chain
- Investigate how varying food quality affects toxin bioaccumulation
- Explore dynamics of Somatic Growth Dilution (SGD)

*Image credit: http://protist.i.hosei.ac.jp/pdb/images/chlorophyta/scenedesmus

We start with a Toxin-mediated predator-prey model: Huang et al. 2014

We start with a Toxin-mediated predator-prey model: Huang et al. 2014

Expand under the Ecological Stoichiometry Framework

Stoichiometric compositions

- Composition of algae depends on light and nutrient availability
- Varying food quality can influence how MeHg bioaccumulates • $Q = \frac{P - \theta y}{x}$
- Prey growth b(u, x) and predator conversion efficiency e(v) depend on nutrient availability

$$b(u,x) \rightarrow b(u,x,y)$$
 $e(v) \rightarrow e(v,x,y)$

Prey growth

$$b(u, x, y) = \alpha_1 \max\{0, 1 - \alpha_2 u\} \left(1 - \frac{x}{\min\left\{K, \frac{P - \theta_y}{q}\right\}}\right)$$

- x prey density
- y predator density
- *u* prey body burden
- α_1 maximum prey growth rate
- α_2 toxin affect on prey growth

- K producer carrying capacity
- P total phosphorus in the system
- q producer minimal P:C
- θ grazer's constant P:C

Predator conversion efficiency

$$e(v, x, y) = \min\left\{eta_1, rac{Q}{ heta}
ight\} \max\{0, 1 - eta_2 v\}$$

- x prey density
- y predator density
- v predator body burden
- β_1 predator C growth efficiency

- β_2 toxin affect on predator growth
- P total phosphorus in the system
- θ grazer's constant P:C
- $Q = \frac{P \theta y}{x}$ producer varying P:C

The stoichiometric toxin-mediated predator-prey system takes the final form:

$$\underbrace{\frac{dx}{dt}}_{Change in prey} = \underbrace{\alpha_1 \max\{0, 1 - \alpha_2 u\}}_{gain from} \left(1 - \frac{x}{\min\left\{K, \frac{P - \theta_Y}{q}\right\}}\right) x - \underbrace{f(x)y}_{loss from}$$

$$\underbrace{\frac{dy}{dt}}_{Change in} = \underbrace{\min\left\{\beta_1, \frac{Q}{\theta}\right\}}_{gain from} \max\{0, 1 - \beta_2 v\} f(x)y - \underbrace{\frac{d_2(v)y}{loss from}}_{death}$$

$$\underbrace{\frac{du}{dt}}_{Change in toxin} = \underbrace{a_1 T}_{uptake} - \underbrace{\sigma_1 u}_{efflux} - \alpha_1 \max\{0, 1 - \alpha_2 u\} \left(1 - \frac{x}{\min\left\{K, \frac{P - \theta_Y}{q}\right\}}\right) u$$

$$\underbrace{\frac{dv}{dt}}_{Change in toxin} = \underbrace{a_2 T}_{uptake} + \underbrace{\xi f(x)u}_{uptake from} - \underbrace{\sigma_2 v}_{efflux} - \underbrace{\min\left\{\beta_1, \frac{Q}{\theta}\right\}}_{loss due to} \max\{0, 1 - \beta_2 v\} f(x)v$$

$$\underbrace{\frac{dv}{dt}}_{loss due to} = \underbrace{a_2 T}_{uptake} + \underbrace{\xi f(x)u}_{uptake from} - \underbrace{\sigma_2 v}_{efflux} - \underbrace{\min\left\{\beta_1, \frac{Q}{\theta}\right\}}_{loss due to} \max\{0, 1 - \beta_2 v\} f(x)v$$

Model parameterization

α_1	Algae maximal growth rate	1.2/day	
α_2	Toxin effect on algal reproduction	0.0051 mg C/ μ g T	*
Κ	Algae C carrying capacity	0-3 mg C/L	
β_1	Daphnia C growth efficiency	0.8 (unitless)	
β_2	Toxin effect on Daphnia reproduction	10.13 mg C/ μ g T	*
θ	Daphnia constant P:C	0.03 mg P/mg C	
q	Algae minimal P:C	0.0038 mg P/mg C	
h_2	Toxin Coefficient for Daphnia mortality	64 mg C $/\mu$ g T $/$ day	*
1	Toxin Exponent for Daphnia mortality	1.17 (unitless)	*
m_2	Daphnia natural mortality	0.25/day	
С	Daphnia max ingestion rate	0.81/day	
а	Daphnia ingestion half saturation constant	0.25 mgC/L	
a_1	Algae uptake coefficient	0.012 L/mg C/day	
a_2	Daphnia uptake coefficient	0.011 L/mg C/day	
σ_1	Algae toxin efflux rate	0.048/day	
σ_2	Daphnia toxin efflux rate	0.04/day	
ξ	Daphnia toxin assimilation efficiency	0.97 (unitless)	
Т	Total Toxin	μ g MeHg / L	
Р	Total phosphorus	mg 0.01-0.08 mg P/ L $$	

 α_2 : toxin effect on algal reproduction

$$b(u, x, y) = \alpha_1 \max\{0, 1 - \frac{\alpha_2 u}{2}u\} \left(1 - \frac{x}{\min\left\{K, \frac{P - \theta_y}{q}\right\}}\right)$$

To estimate α_2 we use

$$\frac{1}{\alpha_2} = \frac{a_1}{\sigma_1} T_0$$

where

- *a*₁ algal MeHg uptake rate
- σ_1 algal MeHg efflux rate
- T_0 MeHg conc. that inhibits growth 100%
- α_2 MeHg affect on algal growth

 β_2 : toxin effect on *Daphnia* reproduction $e(v, x, y) = \min \left\{ \beta_1, \frac{Q}{\theta} \right\} \max\{0, 1 - \beta_2 v\}$

We fit data presented by *Biesinger et al. 1982* on the average number of neonates produced by *Daphnia magna* throughout 21 days of exposure to MeHg

$d_2(v)$: Daphnia mortality

$$d_2(v) = \frac{h_2}{v'} + m_2$$

We fit data presented by *Tsui et al. 2006* on the percent survival of juvenile *Daphnia magna* after 24 hours of exposure to treatments of $1.5-7\mu g$ Hg / L.

Nondimensionalization

$$\begin{split} \widetilde{u} &= \alpha_2 u, \qquad \widetilde{m_2} = \frac{m_2}{\alpha_1}, \qquad \widetilde{\beta_1} = \frac{c\beta_1}{\alpha_1}, \qquad \widetilde{\beta_2} = \frac{\xi c\sigma_1\beta_2}{\alpha_2}, \qquad \gamma = \frac{a_2\beta_2}{\alpha_2a_1}, \\ \widetilde{v} &= \beta_2 v, \qquad \epsilon = \alpha_1\sigma_1, \qquad \widetilde{t} = \alpha_1t, \qquad \widetilde{\sigma_2} = \sigma_2\sigma_1, \qquad \widetilde{T} = \alpha_2a_1\sigma_1T, \\ \widetilde{y} &= \frac{c}{\alpha_1}y, \qquad \widetilde{h_1} = \frac{h_1}{\alpha_1\alpha_2}, \qquad \widetilde{h_2} = \frac{h_2}{\beta_2\alpha_1}, \qquad \widetilde{\theta} = \frac{\alpha_1\theta}{c}, \qquad \widetilde{Q} = \frac{P - \widetilde{\theta}\widetilde{y}}{x}. \end{split}$$

Dropping the tildes, the system can be written:

$$\frac{dx}{dt} = \max\{0, 1-u\} \left(1 - \frac{x}{\min\left\{K, \frac{P - \theta y}{q}\right\}}\right) x - \frac{xy}{a+x}$$
$$\frac{dy}{dt} = \min\left\{\beta_1, \frac{Q}{\theta}\right\} \max\{0, 1-v\} \frac{xy}{a+x} - (h_2v + m_2)y$$
$$\epsilon \frac{du}{dt} = T - \sigma_2^2 u - \epsilon \max\{0, 1-u\} \left(1 - \frac{x}{\min\left\{K, \frac{P - \theta y}{q}\right\}}\right) u$$
$$\epsilon \frac{dv}{dt} = \gamma T - \sigma_2 v + \left[\beta_2 u - \epsilon \min\left\{\beta_1, \frac{Q}{\theta}\right\} \max\{0, 1-v\}v\right] \frac{x}{a+x}$$

Quasi-steady state assumption: $\epsilon
ightarrow 0$

$$u = \frac{T}{\sigma_1^2}, \qquad v = \frac{T}{\sigma_2} \left(\gamma + \frac{\beta_2}{\sigma_1^2} \frac{x}{a+x} \right)$$

The reduced system becomes:

$$\frac{dx}{dt} = \max\left\{0, 1 - \frac{T}{\sigma_1^2}\right\} \left(1 - \frac{x}{\min\left\{K, \frac{P - \theta_Y}{q}\right\}}\right) x - \frac{xy}{a + x}$$
$$\frac{dy}{dt} = \min\left\{\beta_1, \frac{Q}{\theta}\right\} \max\left\{0, 1 - \frac{T}{\sigma_2}\left(\gamma + \frac{\beta_2}{\sigma_1^2}\frac{x}{a + x}\right)\right\} \frac{xy}{a + x} - \left(\frac{h_2 T}{\sigma_2}\left(\gamma + \frac{\beta_2}{\sigma_1^2}\frac{x}{a + x}\right) + m_2\right) y$$

which can be written as:

$$\frac{dx}{dt} = xF(x, y)$$
$$\frac{dy}{dt} = yG(x, y)$$

Boundedness and positive invariance

Solutions to reduced system with initial conditions in the set

$$\Omega = \left\{ (x, y) : 0 \le x \le \mathbf{k} = \min\left\{ K, \frac{P}{q} \right\}, 0 \le y, qx + \theta y < P \right\}$$

will remain there for all forward time.

Boundary equilibria

 $E_0 = (0,0)$ is saddle point. The stability of $E_1 = (\mathbf{k}, 0)$ depends on the sign of $G(\mathbf{k}, 0)$. E_1 is locally asymptotically stable if $G(\mathbf{k}, 0) < 0$ and E_1 is saddle point if $G(\mathbf{k}, 0) > 0$.

Model simulations

Bifurcation dynamics

Bifurcation dynamics

Conclusion

- Developed a predator-prey model of MeHg accumulation under vary nutrient constraints
- Parameterized the model for algae-Daphnia system
- Model predicts that rapid growth from high-quality food can reduce the accumulation and trophic transfer of MeHg in predators
- Ecological Stoichiometry can help improve testing protocols for assessing risk of exposures

Thank you

Warsaw Center of Mathematics and Computer Science

5

Będlewo, 8-12 June 2015

Society for Mathematical Biology