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Ebola Outbreak in Africa 2014

Index case occurred in December 2013. As of May 29,2015 there
were 27,091 (lab confirmed 15,015) cases and 11,175 deaths.
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Ebola in West Africa 2014

In West Africa the epidemic was not recognized for several month.
In time of model analysis (Feb /Mar 2015): confirmed cases
16,389 (11,830 lab) and 6,336 death.
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Ebola Spread Model

The general consensus seems to be that the hospital environment
and funeral arrangements are important elements. Hence the
compartmental model looks like this.
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Markov (Complete Graph) Models

Trajectory Equation

X(t) = X(0) +
∑
k

Rk(t)(ν
′
k − νk)

= X(0) +
∑
k

Yk(

∫ t

0
λk(X(s))ds)(ν ′k − νk)

X(t) state of the system at time t > 0

ν ′k − νk is net change due to kth interaction

Yk are independent unit Poisson processes with rates λk

Basic assumption: the population is uniformly mixed (i.e., the
graph is complete).

6/28 Greg Rempala Micro and Macro: Stochastic Ebola Model



Outline Intro Stochastic SIR Contact Process Likelihood Result

DDJP Deterministic Approximation

If x gives the number of each species present, then c = n−1x
gives the concentrations per unit volume

Density dependent jump process (DDJP) assumes

λnk(x) ≈ nαk
∏
i

cνiki ≡ nλ̃k(c).

The law of large numbers for the Poisson process implies
n−1Y (nu) ≈ u,

Cn(t) = n−1X(t) ≈ Cn(0)+
∑
k

∫ t

0
αk
∏
i

Cni (s)
νik(ν ′k−νk)ds,

when n→∞ the density process Cn → C satisfying ODE

dC(t)

dt
=
∑
k

αk
∏
i

Ci(t)
νik(ν ′k − νk)
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Example: SIR - Kermack and McKendrick (1927)

Here θ = (γ, ν); ODEs for susceptible (x), infectious (y),
removed (z), as

ẋ(t) = −γx(t)y(t)
ẏ(t) = γx(t)y(t)− νy(t)
ż(t) = νy(t)

x(0) = 1 and y(0) = τ � 1, z(0) = 0.

Basic classical model for epidemic disease spread within fixed
size population (1 + τ)

Parameters: (θ, τ)
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Example: SIR (cont)

X + Y
λ1−→ 2Y ; λ1 = γXY (γ = 0.5)

Y
λ2−→ Z; λ2 = νY (ν = 0.3)

R0 = γ/ν > 1 P (major outbreak)> 0
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SIR Epidemic on Configuration Model (CM) Graph

G(q, n) is a CM random graph with degree distribution q
(stubs (half-edges) are paired uniformly at random)

The degree of each node is given and for each I (resp., R) we
know its number of edges of type IS (resp., RS)

A contaminating half-edge is chosen and next susceptible
infected (or dropped). We then determine how many of its
remaining stubs are linked to classes I,R and so on

All events (I,R) are on independent exponential clocks
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Contact Network Model for Today’s Presentation

S −→ I −→ R

Ignore (E,H,F) stages

SIDR on CM random graph G(q, n) with exp. clocks:

γ rate of infection (S −→ I)
ν rate of recovery (I −→ R), but also
SI edges disappear at rate δ (decreased contacts for I’s)

Degree distribution is Poisson-type (PT): Poisson, binomial,
negative binomial

Consider a counting process for (S, I, SI)

SI edges are needed to track I nodes connections

SIDR on G(q, n) as n→∞
IDC (infected degree cond.) maxi∈I0 deg(i) = o(n)
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Counting Process

Let X(t) t ≥ 0 be the counting process for (S, I, SI) starting
at a non-random point X(0) = x0

X(t) evolves according to the times and locations of the node
events (I,R,D) occurring independently at rates (γ, ν, δ)

NOTE: X(t) is not the Markov process but X(t)− EX(t) is
the zero-mean martingale

Let A(t) = (Ai(t))
n
i=1 be the sequence of exponential clock

events for (I,R,D) up to time t at the vertices of G(q, n);
Then X(t) satisfies the trajectory equation

n−1X(t) = n−1X(0) + F(n−1X(t−),A(t))

By the general theory supt∈[0,T ] |X(t)− EX(t)|/n→ 0 w.p.1
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SLLN

Assume X(0)/n = c0 > 0 is non random such that IDC holds.
Then for any 0 < T <∞

sup
t∈[0,T ]

∣∣n−1X(t)− C(t)
∣∣→ 0 as n→∞

where C(t) is the unique solution of

C(t) = c0 +

∫ t

0
F(C(u), EA(u))du.

When q is a PT distribution, we have

F(C(u), EA(u)) =

 −γC3(u)
γC3(u)− νC2(u)

κγC3(u)
C1(u)

(
ψ′(1)C1(u)

2κ − C3(u)
)
− ν̃C3(u)


where κ = ψ′′(1)/(ψ′(1))2 and ν̃ = γ + ν + δ.
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S(∞) and R0

Basic reproduction number is

R0 =
ψ′(1)κ γ

γ + δ + ν

Analysis of the limit of X(t)/n gives the formula for the
average final survivor proportion s∞. Let τ = C2(0), then

if κ = 1
s∞ = exp(−(1 + τ − s∞)R0)

if κ > 1 then

1− sκ∞ = R0
1− κ
κ

sκ∞(sκ−1∞ − (1 + τ))

Early stage growth: linearize around the initial condition
(1,0,0) and compute max eigenvalue
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Approximate Process

Direct analysis of the process X(t) requires tracking the
number of SI’s

Computationally expensive and not always feasible in practice

Idea: approximate X(t) with the space-homogenous Markov
counting process X̃(t) on (S, I) only

Use the limiting equation for C3 to update the jump rates
after each new infection (e.g., with Euler’s method)

The trajectory equation is

X̃(t) = X̃(0) +

(
−Y1(γn

∫ t
0 C3(u)du)

Y1(γn
∫ t
0 C3(u)du)− Y2(ν

∫ t
0 X̃2(u)du)

)

where Y1, Y2 are independent unit Poisson processes.
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Likelihood Function (I)

The approximation is “average-consistent”, that is

sup
t∈[0,T ]

∣∣∣∣n−1X(t)−
(
n−1X̃(t)
C3(t)

)∣∣∣∣→ 0 w.p.1

Given that X̃ is space homogenous, it is relatively easy to
write its likelihood function

Assume we have the sequence of observed values x(ti)
i = 1, . . .m of the process X̃ on [0, T ]

NOTE: In practice, only daily counts of new infections are
given

Then ν is estimated from other sources (medical records, etc)
and X̃2 is imputed
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Likelihood Function (II)

Let θ = (γ, δ, ν, κ, µ) (where µ = ψ′(1))

Additional parameters estimated by likelihood profiling

Let λ1(t; θ) = γnC3(t; θ) and λ2(t; θ) = νX̃2(t);
λ0(t; θ) = λ1(t; θ) + λ2(t; θ)

Let N1, N2 be the resp. jump count processes and ki ∈ {1, 2}

L(θ;x) =
m∏
i=1

λki(ti−1; θ) exp{−λ0(ti−1; θ)[ti − ti−1]}×

× exp{−λ0(tm; θ)[T − tm]}

= exp

{
2∑
i=1

(∫ T

0
log(λi(t−; θ))dNi(t)−

∫ T

0
λi(t−; θ)dt

)}
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Diffusion Approximation (DA)

Since Poisson process can be approximated by BM

Y (nu)− nu√
n

≈W (u),

replacing Yk(nu) by
√
nWk(u) + nu

Cn(t) = Cn(0) +
∑
k

n−1Yk(

∫ t

0
λk(X

n(s))ds)(ν ′k − νk)

≈ Cn(0) +
∑
k

n−1/2Wk(

∫ t

0
λ̃k(C

n(s))ds)(ν ′k − νk)

+

∫ t

0

∑
k

λ̃k(C
n(s))(ν ′k − νk)ds,

where Wk(
∫ t
0 λ̃k(C

n(s))ds) ∼
∫ t
0

√
λ̃k(C̃n(s))dW̃k(s) (Itô

diffusion)
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Model Fitting via Approximate Likelihood (LSE)

DA allows for approximating the likd L by Gaussian one

Transition kernels recovered by simulation (Linder and R 2015)

Fitting LSE and running bootstrap simulations to get the
correct SE’s

So far, tested on cumulative data until mid Feb only

Table : Initial growth rate and R0 estimates

Country Growth rate R0

Liberia 0.038− 0.04 1.4− 1.84
Guinea 0.017− 0.020 1.2− 1.42

Sierra Leone 0.028− 0.03 1.3− 1.63
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Complete Cumulative Data Analysis (until mid Feb 2015)

Liberia Guinea

Param Pois NB Pois NB

γ 0.174 0.226 0.145 0.201
ν 0.249 0.210 0.234 0.204

Dist 2.623 (r, p) = 2.714 (r, p) =
(2.219,0.392) (2.16,0.398)

n/N 0.0153 0.0290 0.006 0.013

Sierra Leone
γ 0.129 0.169
ν 0.219 0.190

Dist 2.952 (r, p) =
(2.269,0.415)

n/N 0.011 0.021
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Results: Liberia

Figure : Poisson and NB Model for Liberia; R0 = 1.7
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Results: Guinea

Figure : Poisson and NB Model for SL; R0 = 1.35
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Results: Sierra Leone

Figure : Poisson and NB Model for SL; R0 = 1.5
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Results w/out effective size adjustment
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Summary

Contact structure is essential to capture dynamics of Ebola

Here: contact SIDR model via a CM on a random graph for
PT degree dist

Approximated by Markovian process based on CM SLLN

Aggregate data analysis using this model seems reasonable

More data is coming: opportunity for analysis across scales
and for incorporate E,H, and F stages.
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Thanks...

National Science Foundation (DMS-1513489)

Mathematical Biosciences Institute at OSU

Karly Jacobsen, Mark Burch, Joe Tien
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