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Intro

Outline

Ebola Outbreak in Africa 2014

Index case occurred in December 2013. As of May 29,2015 there
cases and 11,175 deaths.

were 27,091 (lab confirmed 15,015)
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Outline Intro

Ebola in West Africa 2014

In West Africa the epidemic was not recognized for several month.
In time of model analysis (Feb /Mar 2015): confirmed cases
16,389 (11,830 lab) and 6,336 death.
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Outline Intro

Ebola Spread Model

The general consensus seems to be that the hospital environment
and funeral arrangements are important elements. Hence the
compartmental model looks like this.

\H/

* Heterogenous contact network

¢ Stage-dependent degree
distribution

* Household vs. healthcare contacts
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Stochastic SIR
°

Markov (Complete Graph) Models

Trajectory Equation

e X(t) state of the system at time ¢ > 0
® v} — vy is net change due to kth interaction
@ Y} are independent unit Poisson processes with rates A

@ Basic assumption: the population is uniformly mixed (i.e., the
graph is complete).
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Stochastic SIR
.

DDJP Deterministic Approximation

o If = gives the number of each species present, then ¢ = n~ 'z

gives the concentrations per unit volume
e Density dependent jump process (DDJP) assumes

~ noy H ¢t = ni(c

@ The law of large numbers for the Poisson process implies
n=Y (nu) = u,

C™(t) =n"tX(t) =~ C™(0 —1—2/ akHC" )ik (V) — g )ds,

when n — oo the density process C™ — (' satisfying ODE

ZakHC’ )ik (v, — vg)
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Stochastic SIR
®0

Example: SIR - Kermack and McKendrick (1927)

@ Here 6 = (v,v); ODEs for susceptible (x), infectious (y),
removed (z), as

i(t) = —yx(t)y(t)
yt) = yx®)y@t) —vy(t)
2(t) = vy(t)

z(0) =1and y(0) =7 < 1,2(0) = 0.
@ Basic classical model for epidemic disease spread within fixed
size population (1 + 7)

e Parameters: (6, 7)
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Stochastic SIR
oe

Example: SIR (cont)

X+Y 25 2Y: M\ =AXY  (y=0.5)
y 2% Z, Ay =vY (v =10.3)
Ro=7/v>1 P(major outbreak)> 0

1

1

Frequency
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Contact Process
©0000

SIR Epidemic on Configuration Model (CM) Graph
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@ G(gq,n) is a CM random graph with degree distribution ¢
(stubs (half-edges) are paired uniformly at random)

@ The degree of each node is given and for each I (resp., R) we
know its number of edges of type IS (resp., RS)

@ A contaminating half-edge is chosen and next susceptible
infected (or dropped). We then determine how many of its
remaining stubs are linked to classes I, R and so on

@ All events (I, R) are on independent exponential clocks
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Contact Process
0000

Contact Network Model for Today's Presentation

S—I1—R

Ignore (E,H,F) stages
SIDR on CM random graph G(q,n) with exp. clocks:

e ~ rate of infection (S — I)
e v rate of recovery (I — R), but also
o SI edges disappear at rate § (decreased contacts for I's)

Degree distribution is Poisson-type (PT): Poisson, binomial,
negative binomial

Consider a counting process for (S, I, ST)
ST edges are needed to track I nodes connections
SIDR on G(g,n) as n — o

IDC (infected degree cond.) max;cy, deg(i) = o(n)
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Contact Process
00e00

Counting Process

o Let X(¢) t > 0 be the counting process for (5,1, SI) starting
at a non-random point X (0) = xg

@ X (t) evolves according to the times and locations of the node
events (I, R, D) occurring independently at rates (v, v, d)

e NOTE: X (t) is not the Markov process but X (t) — EX(t) is
the zero-mean martingale

o Let A(t) = (A;(t))i, be the sequence of exponential clock
events for (I, R, D) up to time ¢ at the vertices of G(q,n);

@ Then X (t) satisfies the trajectory equation
nTIX (1) =n 71X (0) + F(n X (t2), A(t))

By the general theory sup;c(o 11 [ X (t) — EX(¢)[/n — 0 w.p.1
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Contact Process
[eleTe] Yol

SLLN

Assume X (0)/n = ¢o > 0 is non random such that IDC holds.
Then for any 0 < T < c©

sup ‘n_lX(t) —C({t)| =0 as n—oo
te[0,7T

where C(t) is the unique solution of

C(t) =co —|—/0 F(C(u), EA(u))du.

When ¢ is a PT distribution, we have

—vCs3(u)
F(C(u), EA(u) = | 7C3(u) — vCs(u)

Greg Rempala Micro and Macro: Stochastic Ebola Model



Contact Process
ooooe

@ Basic reproduction number is

Y1) Ky
Ry — LT
0 y+o+v

@ Analysis of the limit of X (¢)/n gives the formula for the
average final survivor proportion ss,. Let 7 = C5(0), then
o ifk=1
Soo = €xXp(—(1 4+ 7 — 556)R0)
o if Kk > 1 then
1-k

1—s% =R - s% (s"l = (147))

@ Early stage growth: linearize around the initial condition
(1,0,0) and compute max eigenvalue
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Likelihood
©00

Approximate Process

@ Direct analysis of the process X (t) requires tracking the
number of SI's

@ Computationally expensive and not always feasible in practice

o ldea: approximate~X(t) with the space-homogenous Markov
counting process X (t) on (S, ) only

@ Use the limiting equation for C'5 to update the jump rates
after each new infection (e.g., with Euler's method)

@ The trajectory equation is

S —Yl(fynft Cs(u)du)
X(t) = X(0) < Yl(’Ynfot g’g(u)du) — Ya(v fg Xo(u)du) )

where Y1, Ys are independent unit Poisson processes.
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Likelihood
oeo

CM Gillespie DDMJP Approximation
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Likelihood
ooe

Likelihood Function (1)

The approximation is “average-consistent”, that is

sup
te[0,7

Given that X is space homogenous, it is relatively easy to
write its likelihood function

Assume we have the sequence of observed values x(t;)
i=1,...m of the process X on [0, 7]

NOTE: In practice, only daily counts of new infections are
given

Then v is estimated from other sources (medical records, etc)
and Xs is imputed
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Likelihood
®0

Likelihood Function (I1)

o Let 0 = (v,0,v,k, ) (where p=1'(1))
o Additional parameters estimated by likelihood profiling
o Let \i(t;0) = ynC3(t;0) and \a(t;0) = vXs(t);
Ao(t;0) = A1(t;0) + Aa(t;0)
@ Let Ny, Ny be the resp. jump count processes and k; € {1,2}

L(0;) = [ M, (ti-150) exp{—Xo(ti—1; 0)[t: — t:i—1]} X

i=1
X exp{—No(tm;0)[T — tm]}

= exp {ZQ: </0T log(Ai(t—; 0))dN;(t) — /OT Ai(t—; 9)dt> }

=1
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Likelihood
oe

Diffusion Approximation (DA)

@ Since Poisson process can be approximated by BM

Y (nu) — nu

NG ~ W(u),
e replacing Yj(nu) by /nWj(u) + nu
C0 = 00+ S / N (X7 (3))ds) (v — 1)

%

Cm(0) + 32w / Se(C™(5))ds) (v — )
k

/ Z)\k (C™(5)) (v}, — v )ds,

where Wie(J Mu(C())ds) ~ J2/An(Cn(s)TVa(s) (188
diffusion)
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Result
[1e]

Model Fitting via Approximate Likelihood (LSE)

@ DA allows for approximating the likd £ by Gaussian one
e Transition kernels recovered by simulation (Linder and R 2015)

@ Fitting LSE and running bootstrap simulations to get the
correct SE's

@ So far, tested on cumulative data until mid Feb only

Table : Initial growth rate and R estimates

Country Growth rate Ro

Liberia 0.038—0.04 | 1.4—1.84

Guinea 0.017 —0.020 | 1.2 — 1.42
Sierra Leone | 0.028 —0.03 | 1.3 —1.63
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Result
oe

Complete Cumulative Data Analysis (until mid Feb 2015)

Liberia Guinea
Param Pois NB Pois NB
¥ 0.174 0.226 0.145 0.201
v 0.249 0.210 0.234 0.204
Dist | 2.623 (r,p) = 2.714 (r,p) =
(2.219,0.392) (2.16,0.398)
n/N | 0.0153 0.0290 0.006 0.013

Sierra Leone

~ 0.129 0.169

v 0.219 0.190
Dist | 2.952 (r,p) =
(2.269,0.415)
n/N | 0.011 0.021
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Result
€000

Results: Liberia

Liberia: poisson Liberia: negbinom
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Figure : Poisson and NB Model for Liberia; Ry = 1.7
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Result
0®00

Results: Guinea

3500 Guinea: poisson 3500 Guinea: negbinom
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Figure : Poisson and NB Model for SL; Ry = 1.35
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Result
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Results: Sierra Leone

SierraLeone: poisson
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Figure : Poisson and NB Model for SL; Ry = 1.5
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Result
oooe

Results w/out effective size adjustment

Guinea (Poisson):
beta = 0.25735 gamma =

4000 .22033 lambda = 1.9003
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Summary

o Contact structure is essential to capture dynamics of Ebola

@ Here: contact SIDR model via a CM on a random graph for
PT degree dist

@ Approximated by Markovian process based on CM SLLN
o Aggregate data analysis using this model seems reasonable

@ More data is coming: opportunity for analysis across scales
and for incorporate E,H, and F stages.
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