Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result

Stochastic Ebola Model

Grzegorz A. Rempala

Division of Biostatistics and Mathematical Biosciences Institute The Ohio State University

https://neyman.cph.ohio-state.edu

Bedlewo, June 8, 2015

Micro and Macro Systems in Life Sciences

Outline	Intro	Stochastic SIR	Contact Process	Likelihood 00000	Result
1	Ebola Outbre	ak 2014			
2	Stochastic SI Markov Mo DDJP in La Example: S	R odels arge Volume SIR			
3	Contact Proc SIR on CM	ess Random Graph			
4	Likelihood • Approximat • Likelihood	te Process			
5	Result • LSE • Aggregate	Data Analysis			
6	WrapUp • References				

Ebola Outbreak in Africa 2014

Index case occurred in December 2013. As of May 29,2015 there were 27,091 (lab confirmed 15,015) cases and 11,175 deaths.

Image from http://www.economist.com/

In West Africa the epidemic was not recognized for several month. In time of model analysis (Feb /Mar 2015): confirmed cases 16,389 (11,830 lab) and 6,336 death.

Days Since Last Case

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result
Ebola S	opread N	Vodel			

The general consensus seems to be that the hospital environment and funeral arrangements are important elements. Hence the compartmental model looks like this.

- Heterogenous contact network
- Stage-dependent degree distribution
- Household vs. healthcare contacts

 Outline
 Intro
 Stochastic SIR
 Contact Process
 Likelihood
 Result

 •••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••

 Markov (Complete Graph) Models

Trajectory Equation

$$X(t) = X(0) + \sum_{k} R_{k}(t)(\nu'_{k} - \nu_{k})$$

= $X(0) + \sum_{k} Y_{k}(\int_{0}^{t} \lambda_{k}(X(s))ds)(\nu'_{k} - \nu_{k})$

- X(t) state of the system at time t > 0
- $\nu_k' \nu_k$ is net change due to kth interaction
- Y_k are independent unit Poisson processes with rates λ_k
- Basic assumption: the population is *uniformly mixed* (i.e., the graph is complete).

Outline	Intro	Stochastic SIR ○●○○	Contact Process	Likelihood	Result
DDJP	Determ	inistic Approx	kimation		

- If x gives the number of each species present, then $c = n^{-1}x$ gives the concentrations per unit volume
- Density dependent jump process (DDJP) assumes

$$\lambda_k^n(x) \approx n\alpha_k \prod_i c_i^{\nu_{ik}} \equiv n\tilde{\lambda}_k(c).$$

• The law of large numbers for the Poisson process implies $n^{-1}Y(nu)\approx u$,

$$C^{n}(t) = n^{-1}X(t) \approx C^{n}(0) + \sum_{k} \int_{0}^{t} \alpha_{k} \prod_{i} C^{n}_{i}(s)^{\nu_{ik}} (\nu'_{k} - \nu_{k}) ds,$$

when $n \to \infty$ the density process $C^n \to C$ satisfying ODE

$$\frac{dC(t)}{dt} = \sum_{k} \alpha_k \prod_{i} C_i(t)^{\nu_{ik}} (\nu'_k - \nu_k)$$

 $\sim \sim \sim$

• Here $\theta = (\gamma, \nu)$; ODEs for susceptible (x), infectious (y), removed (z), as

$$\begin{aligned} \dot{x}(t) &= -\gamma x(t)y(t) \\ \dot{y}(t) &= \gamma x(t)y(t) - \nu y(t) \\ \dot{z}(t) &= \nu y(t) \end{aligned}$$

 $x(0) = 1 \text{ and } y(0) = \tau \ll 1, z(0) = 0.$

- Basic classical model for epidemic disease spread within fixed size population $(1 + \tau)$
- Parameters: (θ, τ)

Outline	Intro	Stochastic SIR ○○○●	Contact Process	Likelihood	Result
Example	e: SIR	(cont)			

$$\begin{array}{rcl} X+Y & \stackrel{\lambda_1}{\longrightarrow} & 2Y; & \lambda_1 = \gamma XY & (\gamma = 0.5) \\ Y & \stackrel{\lambda_2}{\longrightarrow} & Z; & \lambda_2 = \nu Y & (\nu = 0.3) \\ & & \mathcal{R}_0 = \gamma/\nu > 1 & P(\text{major outbreak}) > 0 \end{array}$$

Outline	Intro	Stochastic SIR	Contact Process ●○○○○	Likelihood 00000	Result
SIR Epid	emic on	Configuration	n Model (CM) Graph	

- G(q, n) is a CM random graph with degree distribution q (stubs (half-edges) are paired uniformly at random)
- The degree of each node is given and for each I (resp., R) we know its number of edges of type IS (resp., RS)
- A contaminating half-edge is chosen and next susceptible infected (or dropped). We then determine how many of its remaining stubs are linked to classes I, R and so on
- All events $\left(I,R\right)$ are on independent exponential clocks

Outline	Intro	Stochastic SIR	Contact Process	Likelihood 00000	Result
Contact	Network	Model for T	odav's Presen	tation	

$S \longrightarrow I \longrightarrow R$

- Ignore (E,H,F) stages
- SIDR on CM random graph $\mathcal{G}(q,n)$ with exp. clocks:
 - γ rate of infection $(S \longrightarrow I)$
 - ν rate of recovery $(I \longrightarrow R)$, but also
 - SI edges disappear at rate δ (decreased contacts for I's)
- Degree distribution is Poisson-type (PT): Poisson, binomial, negative binomial
- \bullet Consider a counting process for (S,I,SI)
- $\bullet~SI$ edges are needed to track I nodes connections
- SIDR on $\mathcal{G}(q,n)$ as $n \to \infty$
- IDC (infected degree cond.) $\max_{i \in I_0} \deg(i) = o(n)$

Outline	Intro	Stochastic SIR	Contact Process	Likelihood 00000	Result
Counting	g Proces	S			

- Let $X(t) \ t \geq 0$ be the counting process for (S,I,SI) starting at a non-random point $X(0) = x_0$
- X(t) evolves according to the times and locations of the node events (I, R, D) occurring independently at rates (γ, ν, δ)
- NOTE: X(t) is not the Markov process but X(t) EX(t) is the zero-mean *martingale*
- Let $\mathcal{A}(t) = (A_i(t))_{i=1}^n$ be the sequence of exponential clock events for (I, R, D) up to time t at the vertices of $\mathcal{G}(q, n)$;
- Then X(t) satisfies the trajectory equation

$$n^{-1}X(t) = n^{-1}X(0) + \mathcal{F}(n^{-1}X(t_{-}), \mathcal{A}(t))$$

By the general theory $\sup_{t\in[0,T]}|X(t)-EX(t)|/n\rightarrow 0$ w.p.1

Outline	Intro	Stochastic SIR	Contact Process 000●0	Likelihood	Result
SLLN					

Assume $X(0)/n = c_0 > 0$ is non random such that IDC holds. Then for any $0 < T < \infty$

$$\sup_{\in [0,T]} \left| n^{-1} X(t) - C(t) \right| \to 0 \quad \text{as} \quad n \to \infty$$

where C(t) is the unique solution of

$$C(t) = c_0 + \int_0^t \mathcal{F}(C(u), E\mathcal{A}(u)) du.$$

When q is a PT distribution, we have

$$\mathcal{F}(C(u), E\mathcal{A}(u)) = \begin{pmatrix} -\gamma C_3(u) & \\ \gamma C_3(u) - \nu C_2(u) \\ \kappa \gamma \frac{C_3(u)}{C_1(u)} \left(\psi'(1) C_1(u)^{2\kappa} - C_3(u) \right) - \tilde{\nu} C_3(u) \end{pmatrix}$$

where $\kappa=\psi^{\prime\prime}(1)/(\psi^\prime(1))^2$ and $\tilde{\nu}=\gamma+\nu+\delta.$

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result
$S(\infty)$ ar	nd \mathcal{R}_0				

• Basic reproduction number is

$$\mathcal{R}_0 = \frac{\psi'(1)\,\kappa\,\gamma}{\gamma + \delta + \nu}$$

• Analysis of the limit of X(t)/n gives the formula for the average final survivor proportion s_{∞} . Let $\tau = C_2(0)$, then • if $\kappa = 1$

$$s_{\infty} = \exp(-(1+\tau - s_{\infty})\mathcal{R}_0)$$

• if $\kappa>1$ then

$$1 - s_{\infty}^{\kappa} = \mathcal{R}_0 \frac{1 - \kappa}{\kappa} s_{\infty}^{\kappa} (s_{\infty}^{\kappa - 1} - (1 + \tau))$$

• Early stage growth: linearize around the initial condition (1,0,0) and compute max eigenvalue

Outline	Intro	Stochastic SIR	Contact Process	Likelihood ●○○○○	Result
Approx	kimate P	rocess			

- Direct analysis of the process X(t) requires tracking the number of $SI{\rm 's}$
- Computationally expensive and not always feasible in practice
- \bullet Idea: approximate X(t) with the space-homogenous Markov counting process $\tilde{X}(t)$ on (S,I) only
- Use the limiting equation for C_3 to update the jump rates after each new infection (e.g., with Euler's method)
- The trajectory equation is

$$\tilde{X}(t) = \tilde{X}(0) + \left(\begin{array}{c} -Y_1(\gamma n \int_0^t C_3(u) du) \\ Y_1(\gamma n \int_0^t C_3(u) du) - Y_2(\nu \int_0^t \tilde{X}_2(u) du) \end{array}\right)$$

where Y_1, Y_2 are independent unit Poisson processes.

Outline	Intro	Stochastic SIR	Contact Process	Likelihood ○●○○○	Result

CM Gillespie

Outline	Intro	Stochastic SIR	Contact Process	Likelihood ○○●○○	Result
Likeliho	ood Fun	ction (I)			

• The approximation is "average-consistent", that is

$$\sup_{t \in [0,T]} \left| n^{-1} X(t) - \begin{pmatrix} n^{-1} \tilde{X}(t) \\ C_3(t) \end{pmatrix} \right| \to 0 \quad \text{w.p.1}$$

- $\bullet\,$ Given that \tilde{X} is space homogenous, it is relatively easy to write its likelihood function
- Assume we have the sequence of observed values $\boldsymbol{x}(t_i)$ $i=1,\ldots m$ of the process \tilde{X} on [0,T]
- NOTE: In practice, only daily counts of new infections are given
- Then ν is estimated from other sources (medical records, etc) and \tilde{X}_2 is imputed

Outline	Intro	Stochastic SIR	Contact Process	Likelihood ○○○●○	Result
Likeliho	od Fun	ction (II)			

• Let
$$\theta = (\gamma, \delta, \nu, \kappa, \mu)$$
 (where $\mu = \psi'(1)$)

• Additional parameters estimated by likelihood profiling

• Let
$$\lambda_1(t;\theta) = \gamma n C_3(t;\theta)$$
 and $\lambda_2(t;\theta) = \nu \tilde{X}_2(t);$
 $\lambda_0(t;\theta) = \lambda_1(t;\theta) + \lambda_2(t;\theta)$

• Let N_1, N_2 be the resp. jump count processes and $k_i \in \{1, 2\}$

$$\mathcal{L}(\theta; \boldsymbol{x}) = \prod_{i=1}^{m} \lambda_{k_i}(t_{i-1}; \theta) \exp\{-\lambda_0(t_{i-1}; \theta)[t_i - t_{i-1}]\} \times \exp\{-\lambda_0(t_m; \theta)[T - t_m]\} \\ = \exp\left\{\sum_{i=1}^{2} \left(\int_0^T \log(\lambda_i(t-; \theta)) dN_i(t) - \int_0^T \lambda_i(t-; \theta) dt\right)\right\}$$

• Since Poisson process can be approximated by BM

$$\frac{Y(nu) - nu}{\sqrt{n}} \approx W(u),$$

 \bullet replacing $Y_k(nu)$ by $\sqrt{n}W_k(u)+nu$

$$\begin{split} C^{n}(t) &= C^{n}(0) + \sum_{k} n^{-1} Y_{k}(\int_{0}^{t} \lambda_{k}(X^{n}(s)) ds)(\nu_{k}' - \nu_{k}) \\ &\approx C^{n}(0) + \sum_{k} n^{-1/2} W_{k}(\int_{0}^{t} \tilde{\lambda}_{k}(C^{n}(s)) ds)(\nu_{k}' - \nu_{k}) \\ &+ \int_{0}^{t} \sum_{k} \tilde{\lambda}_{k}(C^{n}(s))(\nu_{k}' - \nu_{k}) ds, \end{split}$$
where $W_{k}(\int_{0}^{t} \tilde{\lambda}_{k}(C^{n}(s)) ds) \sim \int_{0}^{t} \sqrt{\tilde{\lambda}_{k}(\tilde{C}^{n}(s))} d\tilde{W}_{k}(s)$ (Itô

diffusion)

- \bullet DA allows for approximating the likd ${\cal L}$ by Gaussian one
- Transition kernels recovered by simulation (Linder and R 2015)
- Fitting LSE and running bootstrap simulations to get the correct SE's
- So far, tested on cumulative data until mid Feb only

Table : Initial growth rate and \mathcal{R}_0 estimates

Country	Growth rate	\mathcal{R}_0
Liberia	0.038 - 0.04	1.4 - 1.84
Guinea	0.017 - 0.020	1.2 - 1.42
Sierra Leone	0.028 - 0.03	1.3 - 1.63

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result ○●○○○○○
Complet	e Cum	ulative Data /	Analysis (unt	il mid Feb	2015)

	Liberia		Guinea	
Param	Pois	NB	Pois	NB
γ	0.174	0.226	0.145	0.201
ν	0.249	0.210	0.234	0.204
Dist	2.623	(r, p) =	2.714	(r,p) =
		(2.219,0.392)		(2.16,0.398)
n/N	0.0153	0.0290	0.006	0.013
	Sie	erra Leone		
γ	0.129	0.169		
ν	0.219	0.190		
Dist	2.952	(r, p) =		
		(2.269,0.415)		
n/N	0.011	0.021		

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result ○○●○○○○
Results:	Liberia				

Figure : Poisson and NB Model for Liberia; $\mathcal{R}_0 = 1.7$

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result ○○○●○○○
Results:	Guinea				

Figure : Poisson and NB Model for SL; $\mathcal{R}_0 = 1.35$

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result ○○○○●○○
Results:	Sierra	Leone			

Figure : Poisson and NB Model for SL; $\mathcal{R}_0 = 1.5$

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result ○○○○○●○
Results	s w/out	effective size	adjustment		

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result
Summar	у				

- Contact structure is essential to capture dynamics of Ebola
- Here: contact SIDR model via a CM on a random graph for PT degree dist
- Approximated by Markovian process based on CM SLLN
- Aggregate data analysis using this model seems reasonable
- More data is coming: opportunity for analysis across scales and for incorporate E,H, and F stages.

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result
Thanks					

- National Science Foundation (DMS-1513489)
- Mathematical Biosciences Institute at OSU
- Karly Jacobsen, Mark Burch, Joe Tien

Outline	Intro	Stochastic SIR	Contact Process	Likelihood	Result ○○○○○○●
Referen	ces				

Joel C Miller and Erik M Volz. (2013).

Incorporating disease and population structure into models of sir disease in contact networks.

PloS One, 8(8):e69162.

S Janson, M Luczak, P Windridge (2014).
 Law of large numbers for the SIR epidemic on a random graph with given degrees.
 Random Structures & Algorithms 45 (4), 724-761.

D. Linder and G. Rempala (2015).

Bootstrapping least-squares estimates in biochemical reaction networks.

Journal of Biological Dynamics 9(1): 125-46.