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Fluid mixing - kinematics

Given an Eulerian velocity field u=u(x,t) how does a passive scalar field c(x,t) mixes?
                            (dye, pollutant, plankton, algae, proteins, temperature, density, vorticity, cells(?)) 

If u=0 :  by molecular diffusion ct=DDc

Else   : the advection-diffusion equation:
                                            
                                         

“Taylor reversible flow experiment” 
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Fluid mixing

          
The advection diffusion equation:                                            
                                         
 
For D=0  C is constant along characteristics (particles paths):

         Efficient stirring = chaotic particle paths !  

    U(x,t)   can be  steady 2d or 3d, time periodic, quasi-periodic, a-periodic, 
 chaotic or  turbulent,

depending on the  Reynolds number and on the body forces 

Main Biological applications: small scales   – Stokes flows with unsteady forces by boundaries
                                                   ocean / lakes  - Large scale flows + eddy diffusivity on smaller scales 
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Mixing problems: from micro mixers through
 traditional lab-scales/mechanics

 to geophysics (see reviews by T. Tel (06), Ottino & Wiggins (04),.., Prants (2013)):

Micromixer – Muller et al.

Leong – lab mixing of viscous fluid

Clouds over 
Guadalupe island,
NASA



Micro-mixers Stroock et al 02                                          Petri dish mixing Janosi et al 07 

Ozone vortex split, September 02                   Phytoplankton bloom in the Norwegian Sea, 
Groob et al.                                                      SeaWiFS, NASA



Mixing is a complex phenomena:

What can we learn about this complex phenomena from simple models?

Zvi Artstein: Reality is a good approximation of mathematical models

yet:

Need to get the appropriate simple models…



 Some mathematical principles governing fluid mixing  

 A new diagnostic for identifying structures in an unsteady  flow

Content:



Principles governing chaotic Mixing

* Chaotic Mixing appears only in unsteady flows/viscous 3d flows 

* The unstable manifold is the observable structure in many flow visualizations 

* The stable and unstable manifolds and their generalizations to LCS  govern the 
transport for many initial value problems 

 

* There are DS scales (that differ from the traditional fluid-mechanics scales) 
associated with homoclinic tangles and these determine the transport

* Three dimensionality may simplify surface motion 

* Combining  visualization and velocity data may be used to supply bounds on eddy 
diffusivity

* New simple diagnostic tools for identifying coherent structures, transport and 
dividing surfaces



* Unstable manifold “attracts” passive scalars:

Unstable (stable) manifold of a solution x0(t): the collection of all initial 
particle positions that asymptote to x0(t) exponentially in backward (forward) time

  



Unstable manifold of the OVP

RK ,Leonard, Wiggins JFM 1990

The unstable manifold* is the observable 
structure in many flow visualizations 



Unstable manifold for axis symetric vortex rings:

 Shariff, Leonard and Ferziger 89,06:

Flow isulization:Yamada and Matsui, 78

                                                  Krasny and Nitsche – 
                 roll-up of a vortex disc to a vortex ring (02)

Leap-frogging rings:

Ring in a shock tube

Schlieren visualization of
a ring in a shock tube, 
B. Sturtevant



*The stable and unstable manifolds 
control the transport of passive scalars:

 Flux: Trapped  fluid per unit time =
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“Turnstile” flux mechanism (Channon and Lebowitz 80, MacKay et al 84,..
                                                                      Fluid transport – RK et al 89)

* The stable and unstable manifolds control 
the transport of passive scalars:



Dabiri et al (07)
                                                                      
                           

Many examples showing “lobe” mechanism in numerical/experimental 
settings (some of these include diffusion/noise/other weak effects!) 



Principles governing chaotic Mixing

* Chaotic Mixing appears only in unsteady flows/viscous 3d flows 

* The unstable manifold is the observable structure in many flow visualizations 

* The stable and unstable manifolds and their generalizations to LCS  govern the 
transport for many initial value problems 

 

* There are DS scales (that differ from the traditional fluid-mechanics scales) 
associated with homoclinic tangles and these determine the transport

* Three dimensionality may simplify surface motion 

* Combining  visualization and velocity data may be used to supply bounds on eddy 
diffusivity

* New simple diagnostic tools for identifying coherent structures, transport and 
dividing surfaces

TIME PERIODIC FLOWS ARE “GOOD SIMPLE”  MODELS

 FOR MANY REAL LIFE MIXING PROBLEMS 

2D STEADY FLOWS ARE “TOO SIMPLE”



*Homoclinic tangles characteristics:
 RK&Poje, 99, RK03
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Universal flux dependence 
on frequency:(RK&Poje, 99)

Adiabatic limit (Neishtadt, Kaper, R-
K)

              +

Fast oscillations (Poincare)

             +

Flux continuity (assume oscillating

                                           part is not too 
large**( 

Flux (…= Melnikov fn.)

Flux is always non-monotone 
                                                  

Equi-flux frequencies exist!

Lobe area=
Flux (2p/)

Width of 
mixing zone~

  Flux    (Treschev, 98)

ba 



Mixing with equi-flux frequencies and 
molecular diffusion:

Lower frequency

Stronger gradients

Stronger effect of Diffusion
        on transport

Initially:
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Lower frequency

Larger Core size

Later:

Asymptotic transport is
 governed by the properties
of the Chaotic advection!

0001.0,),,( D DCDCtyxUCt 



Challenge: Apply these scaling principles to “real” flows !

-homoclinic scales – should apply to “essentially periodic” flows:

- Universality of tangle-scales  and diffusion interaction?

- Homoclinic scales near hydrodynamic instabilities?

 

– Optimization of mixing ? (Balasuriya 2011-15)

Dabiri et al (07)
                                                                      
                           



Principles governing chaotic Mixing

* Chaotic Mixing appears only in unsteady flows/viscous 3d flows 

* The unstable manifold is the observable structure in many flow visualizations 

* The stable and unstable manifolds and their generalizations to LCS  govern the 
transport for many initial value problems 

 

* There are DS scales (that differ from the traditional fluid-mechanics scales) 
associated with homoclinic tangles and these determine the transport

* Three dimensionality may simplify surface motion 

* Combining  visualization and velocity data may be used to supply bounds on eddy 
diffusivity

* New simple diagnostic tools for identifying coherent structures, transport and 
dividing surfaces



Consider:

Result:

Why? Manifolds.. Averaged surface flow is not area-preserving!

Previous works:

3d simplifies surface particles in 
turbulent/random flows (get attractors!)
Ott, Sommerer, Shumacher, 
Eckhart and co-workers  1991-1996

Stirling -2000 – also in rivers’ interface to 
the ocean



Why? Manifolds..: Theoretically, by Melnikov function:

                                                                 * homoclinic tangles

                                                                  * unidirectional flux

                                                                  *phase dependent tangle

                                                                                         RD fields 
 



Open question: can you apply this principle to “real” flows?

-combination of homoclinic scales and 3d “averaged” effect?

                                                                      
                           



Principles governing chaotic Mixing

* Chaotic Mixing appears only in unsteady flows/viscous 3d flows 

* The unstable manifold is the observable structure in many flow visualizations 

* The stable and unstable manifolds and their generalizations to LCS  govern the 
transport for many initial value problems 

 

* There are DS scales (that differ from the traditional fluid-mechanics scales) 
associated with homoclinic tangles and these determine the transport

* Three dimensionality may simplify surface motion 

* Combining  visualization and velocity data may be used to supply bounds on eddy 
diffusivity (or motility?)

* New simple diagnostic tools for identifying coherent structures, transport and 
dividing surfaces



LCS + noise destroys dividing surface?         Upper bound on K :   1-10 m2 / s



Principles governing chaotic Mixing

* Chaotic Mixing appears only in unsteady flows/viscous 3d flows 

* The unstable manifold is the observable structure in many flow visualizations 

* The stable and unstable manifolds and their generalizations to LCS  govern the 
transport for many initial value problems 

 

* There are DS scales (that differ from the traditional fluid-mechanics scales) 
associated with homoclinic tangles and these determine the transport

* Three dimensionality may simplify surface motion 

* Combining  visualization and velocity data may be used to supply bounds on eddy 
diffusivity

* New simple diagnostic tools for identifying coherent structures, transport and 
dividing surfaces



Mixing diagnostics- Lagrangian observables

1) Absolute dispersion (||x(t)-x(0)||

2) Relative dispersion (<||x(t)-y(t)||> where ||x(0)-y(0)||=d<<1)

3) Finite Time Lyapunov Exponents (FTLE)

4) Finite time ergodic measures

5) Arc-length growth

6) Averages of observables along trajectories (e.g. Mesohyperbolicity).

7) Curvatures/other geometrical measures

8) Eigenstates of the transfer operator

9) FLI, UFLI



Flow:

                                                  

Extreme value fields:

                               

                                                                     t1                   t1+ t

f() : an observable      t0

Related work: Collet 01, Freitas et al 08,13, Holland et al 12, Lucarini et al. 12

NEW - Extreme value fields



                                                                                                                
                  

* All i.c. in an ergodic component have the same MET value

* Typically, different ergodic components have different Mr
+,- values

* CS have concentric MET field  linear PDF  quadratic CDF

* The convergence is non-oscillatory in time  reveals turnover time

                                                                                                                        Y = -A sin(px)sin(py)

                                      

                                

MET for the steady double gyre



                                                                                                        
                          

Mixing zone:                                     
Discontinuous at the CS boundary – a nice detection tool !

A delta function in the PDF, a discontinuity in the CDF:

The CS are oscillating :

Center is still well defined 

           (for each MET?) 

Oscillations are detectible

by the mismatch from i.c.

                                   

MET for the unsteady double gyre



The CDF signatures of CS & mixing zones

 (20 tidal periods)  



                                                                                                            
                      

*The METs are well defined

*The CDFs  are well defined for a given region of i.c.

 OVP:

                                                                     

 MET for open flows

-Vfluid

Vvortex = 0.5-Vfluid+O(e)



                                                                                                        
                          MET for open flows: time dependence

CS location (*.5)

Lobes shedding

-Vfluid

Vvortex = 0.5-Vfluid+O(e)



    60-90 days          0-90 days 

MET for the South Atlantic:



Extreme value fields provide new information:

• Converge monotonically in time to a common value on each ergodic 
component

• Ergodic components belonging to a CS have a “signature” in the CDF

• The extremal value is typically discontinuous at the CS-mixing zone boundary

• Properly chosen directions enable one to deduce info from CDF plots

*Examples:

*Double gyre

*Oscillating vortex pair

*The South Atlantic (and Mediterranean, not shown)

MET & other EV fields  data reduction



Some mathematical principles governing 
chaotic Mixing

* Chaotic Mixing appears only in unsteady flows 

* The unstable manifold is the observable structure in many flow visualizations

 

* The stable and unstable manifolds and their generalizations to LCS  govern the 
transport for many initial value problems 

 

* There are new scales associated with the homoclinic tangles and these govern the 
transport (with Poje, 1999, RK 03)

* Three dimensionality may simplify surface motion (with Aharon & Gildor, 2012)

* Combining  visualization and velocity data may be used to bound eddy diffusivity (with 
Carlson, Fredj, Gildor, 2010)

* New simple diagnostic tools for identifying  coherent  structures [[also - transport and 
dividing surfaces? Bio-transport in the ocean? ]]

   (with Mundel, Fredj, Gildor, 2014) 
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