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Modelling traffic flow.
Practical goals.

Rational planning and management of vehicle fluxes.
Reduce environmental pollution and cities congestion.

Mathematical modelling.
Microscopic approach. Each car is a ‘moving particle’ satisfying an ODE.

Macroscopic approach. Averaged quantities satisfying PDEs.

Advantages of the macroscopic approach.
Very powerful description of queues tails in terms of shocks.

Suitable with very large number of vehicles.

Easy to validate and implement (low number of parameters).

Suitable to real time prediction, estimation, optimization and control.
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Modelling traffic flow.
Practical goals.

Rational planning and management of vehicle fluxes.
Reduce environmental pollution and cities congestion.

Mathematical modelling.
Microscopic approach. Each car is a ‘moving particle’ satisfying an ODE.

Macroscopic approach. Averaged quantities satisfying PDEs.

Continuum hypothesis is not satisfied!
The number of cars is far lower than that of molecules, for example, in gas dynamics
(1 mole of gas contains 6× 1023 molecules), the continuum assumption is not justified
and the macroscopic formulation is not a priori justified!

Link between macroscopic and microscopic approach.
It provides a validation of the macroscopic approach and of the use of data collection
from GPS devises when the number of detected ‘reference cars’ is very large.
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The macroscopic variables.

The macroscopic variables are:

ρ density #cars per unit length of the road

v velocity space covered per unit time by the cars

f flow #cars per unit time

The macroscopic variables satisfy:

by definition f = ρv

by conservation of #cars ρt + fx = 0

We have 3 variables and 2 equations!
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Two macroscopic approaches.

First order models close the system by giving an explicit expression of 1 of
the 3 unknowns in terms of the remaining 2 (equation of state).
Example: Lighthill-Whitham-Richards (1955, 1956).

ρt + [ρv(ρ)]x = 0.

Equilibrium models.
Velocity as function of the density.

Second order models close the system by adding a further PDE.
Example: Aw-Rascle-Zhang (1999, 2002).

ρt + (ρv)x = 0, [v + p(ρ)]t + v [v + p(ρ)]x = 0.

Continuum analogue of Newton’s law.
Velocity evolves via a separate PDE.

Justification of the macroscopic models.

A posteriori. Descriptive power (no physical laws).

A priori. Validation via microscopic models (no continuum hypothesis).
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The LWR model.

ρt + [ρv(ρ)]x = 0, ρ(t = 0) = ρ̄

Relevant parameters.
Maximum density of vehicles ρmax > 0. We normalize ρmax = 1.

Maximum possible speed vmax > 0.

Total length of the vehicles (constant in time)

L =

∫
R
ρ(t , x)dx > 0.

Main assumptions on the velocity map v .

v ∈ C1([0, 1]; [0, vmax]).

v strictly decreasing on [0, 1].

v(0) = vmax, v(1) = 0.

Initial condition.
ρ(t = 0) = ρ̄ ∈ L∞(R), ρ̄ ≥ 0, ρ̄ with compact support.
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Examples of velocities (from empirical observations).

Greenshields 1935:

v(ρ) = vmax(1− ρ)

ρ1

v

ρ1

v

1 ρ

f

1 ρ

f
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Examples of velocities (from empirical observations).

Greenberg 1959, ‘renormalized’ version

v(ρ) = vmax

[
log
(

1 + α

α

)]−1

log
(

1 + α

ρ+ α

)
α > 0

ρ1

v

ρ1

v

1 ρ

f

1 ρ

f
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Examples of velocities (from empirical observations).

Pipes-Munjal 1967

v(ρ) = vmax (1− ρα) α > 0

Example: α = 0.2

ρ1

v

ρ1

v

1 ρ

f

1 ρ

f
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Examples of velocities (from empirical observations).

Pipes-Munjal 1967

v(ρ) = vmax (1− ρα) α > 0

Example: α = 2

ρ1

v

ρ1

v

1 ρ

f

1 ρ

f
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A quick review on the mathematical theory.

Discontinuous solutions, weak solutions: for all φ ∈ C1
c([0,+∞)× R),∫

R

∫
R+

[
ρ(t , x)φt (t , x) + f (ρ(t , x))φx (t , x)

]
dt dx +

∫
R
ρ̄(x)φ(0, x) dx = 0

Non uniqueness of weak solutions. Uniqueness of entropy solutions (Oleinik
1963, Kružkov 1970): for all test functions φ ≥ 0 and for all k ∈ R,∫

R

∫
R+

[
|ρ(t , x)− k |φt (t , x) + sgn (ρ(t , x)− k) [f (ρ(t , x))− f (k)]φx (t , x)

]
dt dx

+

∫
R
φ(0, x)|ρ̄(x)− k | dx ≥ 0 (1)

Initial trace. Uniqueness if (1) is satisfied with φ(t = 0) = 0 and initial trace is
reached in the weak-∗ L∞-topology, provided f is not affine a.e. (Chen-Rascle
2000).

Oleinik condition. Entropy solutions are characterised by

f ′(ρ)x ≤
1
t
, in D′((0,+∞)× R).
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Constructing entropy solutions.

Regularization strategy.

Vanishing viscosity, see Dafermos 2000 and the references therein.

Numerical methods.

Finite differences. Glimm 1965.

Wave front tracking method. Dafermos 1972.

Mesoscopic approximation.

Kinetic approximation. Lions-Perthame-Tadmor 1994.

Microscopic probabilistic approach.

Exclusion processes (list incomplete!). Rost 1982, Ferrari-Fouque 1987.

Microscopic deterministic approach.

Sticky particles. Brenier-Grenier 1998.

Lagrangian, follow-the-leader type systems.

Formal derivation: Whitham 1974, Colombo-Rossi 2013.

Rigorous derivation: Di Francesco-Rosini 2015.
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The follow-the-leader particle approximation.

Fix the initial condition ρ̄ and let L be its total mass.

Fix n ∈ N and let ` = `n = L 2−n be the length of each platoon of cars.

Consider N + 1 = Nn + 1 = 2n + 1 (ordered) reference cars x0, x1, . . . , xN

corresponding to the end points of the N platoons.

The cars x0, . . . , xN evolve according to

ẋN(t) = vmax,

ẋi (t) = v
(

`

xi+1(t)− xi (t)

)
, i = N − 1, . . . , 0.

The initial conditions of the cars are taken by atomization of ρ̄, i.e.

x0(t = 0) = x̄0 = min(spt(ρ̄)),

xi (t = 0) = x̄i = sup

{
x ∈ R :

∫ x

x̄i−1

ρ̄(y) dy < `

}
, i = 1, . . . ,N.
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Atomization of the initial condition.

The initial condition ρ̄ is split into N parts with equal integral `.

x

ρ

x0 ... xN-1 xN x

ρ

x0 ... xN-1 xN
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Large particle limit.

Empirical measure

ρ̃n(t) =
N∑

i=1

`n δxi (t)

Discrete density

ρ̂n(t , x) =
N∑

i=1

yn
i (t)χ[xi (t),xi+1(t))(x), yn

i (t) =
`n

xi+1(t)− xi (t)

Goal:
Prove that ρ̃n(t) and ρ̂n(t , ·) converge to the unique entropy solution ρ of the LWR
equation with ρ̄ as initial condition.
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Empirical measure and discrete density.

Empirical measure Discrete density

ρ̃(t) =
N∑

i=1

` δxi (t) ρ̂(t , x) =
N∑

i=1

yi (t)χ[xi (t),xi+1(t))(x)

x

ρ
˜

x0 ... xN-1 xN x

ρ
∧

x0 ... xN-1 xN
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Heuristic derivation.

Let ρ be the entropy solution of

ρt + [ρv(ρ)]x = 0. (2)

Let F be the cumulative distribution of ρ:

F (x , t) =

∫ x

−∞
ρ(t , y)dy .

Let X be the pseudo inverse of F :

X (t , z) = inf {x ∈ R : F (x) > z} , z ∈ [0, L].

Formally, X (t , z) satisfies F (t ,X (t , z)) = z and

Fx =ρ
Ft =−ρv(ρ)

}
⇒ 1=F (t ,X (t , z))z =Fx Xz =ρXz

0=F (t ,X (t , z))t =Ft + Fx Xt =ρ(Xt − v(ρ))

}
⇒ Xt = v

(
1
Xz

)
. (3)

Forward z-finite difference of (3) with step ` gives

Xt (t , z) = v
(

`

X (t , z + `)− X (t , z)

)
, z = 0, . . . , (N − 1)`. (4)

The follow-the-leader system (4) is the discrete Lagrangian version of (2).
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Convergence Theorem.
Let ρ be the unique entropy solution of

ρt + [ρv(ρ)]x = 0, ρ(t = 0) = ρ̄,

where ρ̄ is inML ∩ L∞(R), v is in C1(R+), strictly decreasing with v(0) = vmax > 0.

Theorem (MDF and MDR, ARMA 2015.)
If

ρ̄ ∈ BV(R),

or

R+ 3 ρ 7→ ρv ′(ρ) ∈ R+ is non-increasing.

Then,

the sequence ρ̂n → ρ almost everywhere and in L1
loc([0,+∞)× R).

the sequence ρ̃n → ρ in the topology L1
loc([0,+∞); dL,1), where dL,1 is the scaled

1-Wasserstein distance.

ML = {ρ Radon measure on R with compact support : ρ ≥ 0, ρ(R) = L}
dL,1(ρ1, ρ2) = L d1(ρ1/L, ρ2/L) = ‖Fρ1 − Fρ2‖L1(R)
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Ingredients: cumulative distributions.

x 7→ F̂ n(t , x) =

∫ x

−∞
ρ̂n(t , y)dy is PLC x 7→ F̃ n(t , x) = ρ̃n(t)((−∞, x ]) is PC

x

F
∧

x0 ... xN-1 xN x

F
∧

x0 ... xN-1 xN x

F
˜

x0 ... xN-1 xN x

F
˜

x0 ... xN-1 xN
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Ingredients: pseudo inverses.

X̂ n pseudo-inverse of F̂ n is PLC X̃ n pseudo-inverse of F̃ n is PC

L

X
∧

x0

...

xN-1

xN

L

X
˜

x0

...

xN-1

xN
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Ingredients: discrete Lagrangian density.

ρ̌n = ρ̂n ◦ X̂ n is PC

L

ρ
∨
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Strategy of the proof.

(i) Prove that (X̃ n)n has a strong limit X in L1
loc([0,+∞[×[0,L]),

equivalent to (ρ̃n)n converging to a measure ρ in L1
loc([0,+∞[; dL,1).

Prove that (X̂ n)n converges in L1
loc([0,+∞[×[0,L]) to the same limit

X , i.e. (ρ̂n)n converges to ρ in L1
loc([0,+∞[; dL,1).

(ii) Prove that X has difference quotients bounded below by 1, i.e. ρ is
actually in L∞ and is a.e. bounded by 1.
This easily implies weak-∗ convergence of (ρ̌n)n to a limit ρ̌ in L∞.
It remains to prove that ρ̌ ◦ F = ρ, and that such limit is the unique
entropy solution to LWR. This requires stronger estimates on ρ̂n.

(iii) Case ρ̄ ∈ BV: direct uniform BV estimate of ρ̂n.
Case ρ̄ ∈ L∞+additional assumption on v : uniform discrete Oleinik
condition for ρ̌n, which implies uniform BV estimate for ρ̌n, i.e.for ρ̂n.

(iv) Prove that ρ is a weak solution: it follows from letting n→ +∞ in the formulation
of the FTL system

X̃ n
t = v(ρ̌n).

(v) Prove that ρ is an entropy solution: in the discrete setting, use strong L1

compactness to pass it to the limit.
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Discrete maximum principle.

The global existence for the FTL system is guaranteed by the following

Lemma (Discrete maximum principle)

For all i = 0, . . . ,N − 1, we have ` ≤ xi+1(t)− xi (t) for all times t ≥ 0.

Proof.
Replace v with its extension V = vχ[0,1], V is still Lipschitz.

Assume by contradiction xi+1(t1)− xi (t1) = `, and xi+1(t)− xi (t) < ` on
t ∈ (t1, t2].

Integrate FTL on [t1, t ]:

xi (t) = xi (t1) +

∫ t

t1

V
(

`

xi+1(τ)− xi (τ)

)
dτ = xi (t1).

` > xi+1(t)− xi (t) ≥ xi+1(t1)− xi (t1) = `, contradiction!

By uniqueness, the same holds for the system with v .
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Strong compactness of X̂ n and X̃ n.

1-dimensional Wasserstein distance
Fi cumulative distribution of ρi

Xi pseudo-inverse of Fi

}
⇒ dL,1(ρ1, ρ2) = ‖X1 − X2‖L1([0,L])

Proposition
There exists a unique X ∈ L∞ (R+ × [0, L]), monotone non-decreasing and right
continuous with respect to z, such that

(X̂ n)n and (X̃ n)n converge to X in L1
loc (R+ × [0, L]) ,

and for any t , s > 0

TV [X (t)] ≤ |x̄N − x̄0 + vmax t |, (5a)

‖X (t)‖L∞([0,L];R) ≤ max {|x̄0|, |x̄N + vmax t |} , (5b)∫ L

0
|X (t , z)− X (s, z)| dz ≤ vmax L |t − s|. (5c)

Moreover, (X̃ n)n converges to X a.e. on R+ × [0, L].
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Strong compactness of X̂ n and X̃ n.

Proof.
Fix T > t > s ≥ 0. Estimates (5a) and (5b) are immediately proven for X̃ n.∫ L

0

∣∣∣X̃ n(t , z)− X̃ n(s, z)
∣∣∣ dz =

Nn−1∑
i=0

`n
[
xn

i (t)− xn
i (s)

]
=

Nn−1∑
i=0

`n

[∫ t

s
v
(
yn

i (τ)
)

dτ
]
≤ vmax L (t − s) .

By Helly’s theorem, X̃ n converges strongly as in the statement up to a subsequence.
As X̃ n is monotone in n, the whole sequence converges to a unique limit X .∫ L

0

∣∣∣X̂ n(t , z)− X̃ n(t , z)
∣∣∣ dz =

Nn−1∑
i=0

yn
i (t)−1

∫ (i+1) `n

i `n

[z − i `n] dz

=
`n

2

Nn−1∑
i=0

[
xn

i+1(t)− xn
i (t)

]
=
`n

2
[
xn

Nn (t)− xn
0 (t)

]
≤ `n

2
[
x̄max − x̄min + vmax T

]
,

Hence, X̂ n and X̃ n have the same limit.
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L∞ bound for the limit measure.

Let 0 ≤ z1 < z2 ≤ L.

For n sufficiently large, let i `n ≤ z1 < (i + 1) `n and `n j ≤ z2 < `n (j + 1)

The discrete maximum principle implies

X̃ n(t , z2)− X̃ n(t , z1)

z2 − z1
≥

xn
j (t)− xn

i (t)
(j + 1) `n − i `n

≥ (j − i) `n

(j + 1) `n − i `n

= 1− 1
j − i + 1

≥ 1− 1
(z2 `

−1
n − 1)− z1 `

−1
n + 1

= 1− `n

z2 − z1
.

By sending n→ +∞, we get

∂zX (t , ·) ≥ 1 in D′.

Let F (t , ·) be the pseudo inverse of X (t , ·). Then ρ = Fx satisfies

ρ(t , x) ≤ 1.

ρ̃n and ρ̂n converge to ρ in L1
loc([0,+∞); dL,1).

ρ̌n = ρ̂n ◦ X̂ n converges to some limit ρ̌ up to a subsequence in the weak-∗ L∞

topology.
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A discrete Lagrangian version of LWR.

In the sequel, we shall make an extensive use of the discrete equations

ẏn
i (t) = −yn

i (t)2

`n

[
v(yn

i+1(t))− v(yn
i (t))

]
, i = 0, . . . ,N − 2,

ẏn
N−1(t) = −

yn
N−1(t)2

`n

[
vmax − v(yn

N−1(t))

]
.
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BV contraction for BV initial data.

Proposition (BV contractivity for BV initial data)

Assume ρ̄ ∈ BV. Then for any n ∈ N

TV
[
ρ̂n(t)

]
= TV

[
ρ̌n(t)

]
≤ TV [ρ̄] for all t ≥ 0.

Proof. (We omit the index n for simplicity)

d
dt

TV [ρ̂(t)] =
d
dt

[
y0 + yN−1 +

N−2∑
i=0

|yi − yi+1|

]

= ẏ0 + ẏN−1 +
N−2∑
i=0

sgn [yi − yi+1] [ẏi − ẏi+1]

=

[
1 + sgn [y0 − y1]

]
ẏ0 +

[
1− sgn [yN−2 − yN−1]

]
ẏN−1

+
N−2∑
i=1

[
sgn [yi − yi+1]− sgn [yi−1 − yi ]

]
ẏi .
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BV contraction for BV initial data.

Proof (continued): We analise all the terms above, and we get[
1 + sgn [y0 − y1]

]
ẏ0 = −

[
1 + sgn [y0 − y1]

]
y2

0

`
[v(y1)− v(y0)] ≤ 0,

[
1− sgn [yN−2 − yN−1]

]
ẏN−1 = −

[
1− sgn [yN−2 − yN−1]

]
y2

N−1

`
[vmax − v(yN−1)] ≤ 0,

[
sgn [yi − yi+1]− sgn [yi−1 − yi ]

]
ẏi =

= −

[
sgn [yi − yi+1]− sgn [yi−1 − yi ]

]
y2

i

`
[v(yi+1)− v(yi )] ≤ 0.

Therefore, TV [ρ̂(t)] ≤ TV [ρ̄] for all t ≥ 0.
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Discrete Oleinik condition.

Lemma (Discrete Oleinik-type condition)

Assume v satisfies the additional assumption ρv ′(ρ) non-increasing. Then, for any
i = 0, . . . ,Nn − 2 we have

t yn
i (t)

[
v
(
yn

i+1(t)
)
− v

(
yn

i (t)
)]
≤ `n for all t ≥ 0. (6)

Remark
Condition (6) in terms of xi (t)

v (yn
i+1(t))− v (yn

i (t))

xi+1(t)− xi (t)
≤ 1

t
for all t ≥ 0. (7)

(7) is a discrete analogous of

v(ρ)x ≤
1
t
.

However, the sharp form of the Oleinik condition for the scalar conservation law is (cf.
Hoff 1983)

f ′(ρ)x = (v(ρ) + ρv ′(ρ))x ≤
1
t
.
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Proof of the discrete Oleinik condition.

Notation: (we omit the dependence on n and t)

zi
.

= t yi [v (yi+1)− v (yi )] , i = 0, . . . ,N − 2,

zN−1
.

= t yN−1 [vmax − v(yN−1)] .

The Lemma is proven once we provide the estimate zi ≤ ` for i = 1, . . . ,N − 1.
• STEP 0: zN−1 ≤ `.

żN−1 = yN−1 [vmax − v(yN−1)] + t ẏN−1 [vmax − v(yN−1)]− t yN−1 v ′(yN−1) ẏN−1

= yN−1 [vmax − v(yN−1)]−
t y2

N−1

`
[vmax − v(yN−1)]2

+
t v ′(yN−1) y3

N−1

`
[vmax − v(yN−1)]

≤ yN−1 [vmax − v(yN−1)]
[
1− zN−1

`

]
.

Since zN−1(0) = 0, from the above estimate we get zN−1(t) ≤ ` for all t ≥ 0.
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Proof of the discrete Oleinik condition (continued).
• STEP 1: zi+1 ≤ `⇒ zi ≤ `.

żi = yi [v (yi+1)− v (yi )] + t ẏi [v (yi+1)− v (yi )] + t yi
[
v ′(yi+1) ẏi+1 − v ′(yi ) ẏi

]
= yi [v (yi+1)− v (yi )]− t y2

i

`
[v(yi+1)− v(yi )]2

+ t yi

[
−

v ′(yi+1) y2
i+1

`
[v(yi+2)− v(yi+1)] +

v ′(yi ) y2
i

`
[v(yi+1)− v(yi )]

]

= yi [v (yi+1)− v (yi )]− yi

`
[v(yi+1)− v(yi )] zi −

v ′(yi+1) yi yi+1

`
zi+1 +

v ′(yi ) y2
i

`
zi .

Since sgn+ [zi ] = sgn+ [v (yi+1)− v (yi )] = sgn+ [yi − yi+1] for all t > 0, from the
assumption on zi+1 we easily obtain

d
dt

[zi ]+ = yi [v (yi+1)− v (yi )]+ −
yi

`
[v(yi+1)− v(yi )]+ [zi ]+

− v ′(yi+1) yi yi+1

`
sgn+[zi ] zi+1 +

v ′(yi ) y2
i

`
[zi ]+

≤ yi [v (yi+1)− v (yi )]+

[
1− [zi ]+

`

]
− v ′(yi+1) yi yi+1 sgn+[zi ] +

v ′(yi ) y2
i

`
[zi ]+.
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Proof of the discrete Oleinik condition (continued).

The additional condition on v gives −v ′(yi+1)yi+1 ≤ −v ′(yi )yi for yi ≥ yi+1, and then

d
dt

[zi ]+ ≤ yi [v (yi+1)− v (yi )]+

[
1− [zi ]+

`

]
− v ′(yi ) y2

i sgn+[zi ] +
v ′(yi ) y2

i

`
[zi ]+

= yi

[
[v (yi+1)− v (yi )]+ − v ′(yi ) yi

] [
1− [zi ]+

`

]
.

Now, as v ′ ≤ 0, and since zi (0) = 0, we get that zi (t)+ ≤ ` for all t ≥ 0.
• STEP 2: zN−2 ≤ `. From analogous computations as in previous step, by using the
monotonicity of y 7→ y v ′(y) and Step 0, we get

d
dt

[zN−2]+ ≤ yN−2

[
[v (yN−1)− v (yN−2)]+ − v ′(yN−2) yN−2

] [
1− [zN−2]+

`

]
.

Again, v ′ ≤ 0 and zN−2(0) = 0 imply that zN−2(t)+ ≤ ` for all t ≥ 0.
• CONCLUSION. The estimate (6) is proven recursively: Step 2 provides the first step
with i = N−2, whereas Step 1 proves that the estimate holds for all i ∈ {0, . . . ,N−3}.

Remark: The discrete Oleinik condition provides a uniform BV estimate away from
t = 0. Here we use that solutions have compact support.
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A technical problem.
Typically (e.g. the wave-front-tracking algorithm for conservation laws) L1-continuity
of the approximating sequence gives the desired compactness via Helly’s Theorem.
Here we are able to prove such an estimate for ρ̌n, but not for ρ̂n.

Proposition (Uniform L1-continuity in time of ρ̌n)

For any δ > 0 we have∫ L

0

∣∣ρ̌n(t , z)− ρ̌n(s, z)
∣∣ dz ≤ C|t − s| for all t , s ≥ δ,

with some C depending on δ.

Proof.
(Sketched) A direct computation of the l.h.s. and the discrete maximum principle give∫ L

0

∣∣ρ̌n(t , z)− ρ̌n(s, z)
∣∣ dz =

Nn−1∑
i=0

`n
∣∣yn

i (t)− yn
i (s)

∣∣ ≤ ∫ t

s

[
TV
[
v
(
ρ̌n(τ)

)]
+ vmax

]
dτ.
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How to solve the technical problem?

Proposition (Uniform Wasserstein time continuity of ρ̂n)

For any n ∈ N we have
dL,1

(
ρ̂n(t), ρ̂n(s)

)
≤ 2 L vmax |t − s| for all s, t ≥ 0.

Proof.

dL,1
(
ρ̂n(t), ρ̂n(s)

)
=
∥∥∥X̂ n(t)− X̂ n(s)

∥∥∥
L1([0,L];R)

=

Nn−1∑
i=0

∫ (i+1) `n

i `n

[
X̂ n(t , z)− X̂ n(s, z)

]
dz

=

Nn−1∑
i=0

`n
[
xn

i (t)− xn
i (s)

]
+

Nn−1∑
i=0

[
yn

i (t)−1 − yn
i (s)−1

] ∫ (i+1) `n

i `n

(z − i `n) dz

=

Nn−1∑
i=0

`n

∫ t

s
v
(
yn

i (τ)
)

dτ +

Nn−1∑
i=0

`2
n

2

∫ t

s

d
dτ

[
yn

i (τ)−1
]

dτ

≤ L vmax (t − s) +
`n

2

∫ t

s

[
vmax − v

(
yn

0 (τ)
)]

dτ ≤ 2 L vmax (t − s).
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A generalisation of Aubin-Lions Lemma.

The desired compactness then follows from the following

Theorem (Generalized Aubin-Lions lemma, Rossi-Savaré 2003)
Let T , L > 0 and I ⊂ R be a bounded open convex interval. Assume w : R→ R is a
Lipschitz continuous and strictly monotone function. Let (ρn)n∈N be a nonnegative
sequence in L∞ ((0,T )× R; R), with compact support and fixed mass L > 0, such
that:

ρn : (0,T )→ L1 (R; R) is measurable for all n ∈ N;

spt (ρn(t)) ⊆ I for all t ∈ ]0,T [ and n ∈ N;

sup
n∈N

∫ T

0

[∥∥w
(
ρn(t)

)∥∥
L1(I;R)

+ TV
[
w
(
ρn(t)

)]]
dt < +∞;

There exists a constant C depending only on T such that
dL,1 (ρn(s), ρn(t)) ≤ C |t − s| for all s, t ∈ ]0,T [ and n ∈ N.

Then, (ρn)n∈N is strongly relatively compact in L1((0,T )× R; R).
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Changing variable in the limit.

Another important property that we need to check is

ρ̌(t ,F (t , x)) = ρ(t , x), on spt(ρ),

where

ρ̌ is the strong limit of ρ̌n,

ρ is the strong limit of ρ̂n,

F is the cumulative distribution of ρ.

This is ensured by the strong compactness of both ρ̌n and ρ̂n.
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Weak solutions in the limit.

Proposition
The limit function ρ of ρ̂n is a weak solution of the LWR equation with i.c. ρ̄.

Proof.
Let φ ∈ C∞c ([0,+∞[× R; R). We have∫

R+

∫ L

0

[
v
(
ρ̌n(t , z)

)
φx

(
t , X̃ n(t , z)

)]
dzdt =

Nn−1∑
i=0

∫
R+

∫ (i+1) `n

i `n

[
v
(
yn

i (t)
)
φx
(
t , xn

i (t)
)]

dz dt

=

Nn−1∑
i=0

∫
R+

∫ (i+1) `n

i `n

[
d
dt
φ
(
t , xn

i (t)
)
− φt

(
t , xn

i (t)
)]

dz dt

= −
∫ L

0
φ
(

0, X̃ n(0, z)
)

dz −
∫

R+

∫ L

0
φt

(
t , X̃ n(t , z)

)
dz dt .

By the strong convergence of X̃ n and ρ̌n, by chancing variable x = X (t , z), and by
using ρ̌ (t ,F (t , x)) = ρ(t , x) a.e. on spt(ρ), we get the definition of weak solution for
LWR.
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Entropy solutions in the limit.

Conclusion of the proof.

We need to prove that the limit ρ is an entropy solution in the Kružkov sense.

This is trivial in the uniformly concave case f ′′ ≤ −ε < 0, as in that case
f ′(ρ) ' v(ρ), and one can obtain the sharp Oleinik condition f ′(ρ)x ≤ 1/t in the
limit.

In the general case, we need to use the definition of entropy solution by Kružkov.
This follows from the inequality∫

R+

∫
R

[∣∣ρ̂n(t , x)− k
∣∣φt (t , x)+sgn(ρ̂n(t , x)−k)

[
f (ρ̂n(t , x))−f (k)

]
φx (t , x)

]
dx dt ≥o(1),

as n→ +∞, which is very technical and is omitted here.
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Concluding remarks.

We remark that our set of assumptions on v allows for degenerate concave
fluxes at zero.

In the case of linear velocity v , e.g. v(ρ) = vmax(1− ρ), the convergence to a
weak solution can be obtained without the need of the BV estimates, as the
velocity term in the pseudo-inverse PDE is linear. This is somehow intrinsic in
using a Lagrangian description.

In order to get continuity in time for the sequence ρ̂n, the most natural try would
be getting L1-continuity. Encouraged by the L1 time equi-continuity of ρ̌n, we
have attempted at proving such a property in many ways without success. This
is the reason why use the generalized Aubin-Lions lemma, which allows to take
advantage of the Wasserstein equi-continuity of ρ̂n, and still get the same
L1-compactness in the end. The only drawback of this strategy is that we can’t
get any L1 time continuity for the limit.

Our approach has the advantage of providing a piecewise constant
approximation with a non increasing number of jumps. The price to pay for such
a simplification is that we lose the classical shock structure at a microscopic
level. Indeed, the explicit solution to the FTL system even for simple
Riemann-type initial conditions is not immediate.
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Future projects.

Extending the results to Dirichlet boundary conditiont (phantom moving particles
at the boundary).

Use this strategy to attack the existence theory of similar models, e.g. with
discontinuous flux.
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Numerical simulation.

Rosini (ICM, UW) Conservation laws via particle systems MMSLS 2015 49 / 50



THANK YOU
FOR YOUR
ATTENTION

Rosini (ICM, UW) Conservation laws via particle systems MMSLS 2015 50 / 50


	The motivating problem: traffic flow
	Macroscopic models
	Follow the leader approximation

	Convergence result
	A preliminary lemma
	Weak convergence
	Uniform estimates
	Time continuity
	Convergence to entropy solutions

	Remarks and future projects

	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


