Mathematical Optimization for Clinical Decision Support and Training

Sebastian Sager

Institute for Mathematical Optimization Otto-von-Guericke-Universität Magdeburg Będlewo, June 10, 2015

Outline

1 Introduction to MODEST

- 2 Decoding complex cardiac arrhythmia
- 3 Optimal control for leukemia treatment
- 4 Possible other clinical applications

5 Training

- Complex Problem Solving
- Optimization Approach to CPS
- Optimization-based Feedback
- Results of a Web-based Feedback Study

6 Summary

- Clinical practice \mapsto ubiquitous decision making for physicians
- Difficult! Patient- and situation-dependent, non-intuitive, high work load, time constraints, knowledge transfer, ...
- We want to develop mathematical tools (modeling, simulation, and optimization) to support and train clinical decision making

 Mathematical Optimization for clinical DEcision Support and Training

 ERC Consolidator Grant MODEST-647573
 Sebastian Sager

Mathematical Optimization for clinical DEcision Support and Training ERC Consolidator Grant MODEST-647573 Sebastian Sager

Mathematical Optimization for clinical DEcision Support and Training ERC Consolidator Grant MODEST-647573 Sebastian Sager

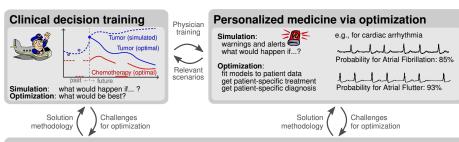
Clinical	decision training

Simulation: what would happen if...? Optimization: what would be best?

Mathematical Optimization for clinical DEcision Support and Training ERC Consolidator Grant MODEST-647573 Sebastian Sager

Mathematical Optimization for clinical DEcision Support and Training FBC Consolidator Grant MODEST-647573 Sebastian Sager

e.g., for cardiac arrhythmia


Probability for Atrial Fibrillation: 85%

Probability for Atrial Flutter: 93%

Mathematical Optimization for clinical DEcision Support and TrainingERC Consolidator Grant MODEST-647573Sebastian Sager

Mixed-integer nonlinear optimal control

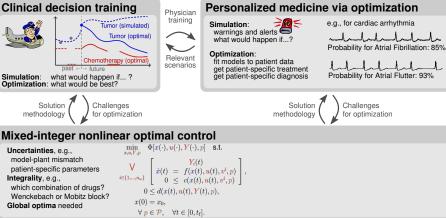
Uncertainties, e.g.,

model-plant mismatch patient-specific parameters

Integrality, e.g.,

which combination of drugs?

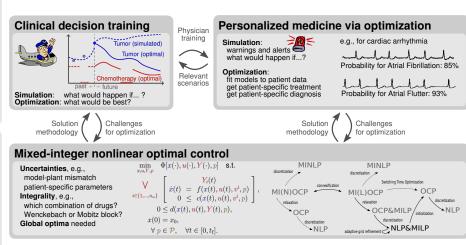
Wenckebach or Mobitz block?


Global optima needed

Mathematical Optimization for clinical DEcision Support and Training FBC Consolidator Grant MODEST-647573 Sebastian Sager

Mathematical Optimization for clinical DEcision Support and Training ERC Consolidator Grant MODEST-647573 Sebastian Sager

S


RITHM

0

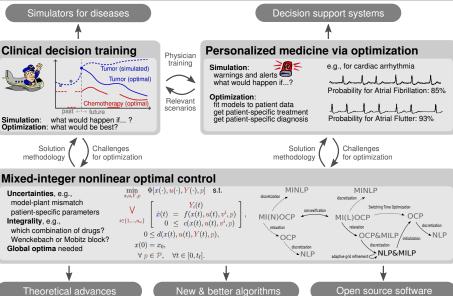
ശ

⊲

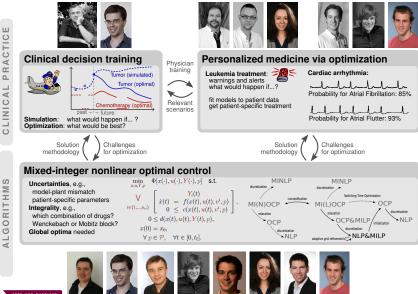
ш

Mathematical Optimization for clinical DEcision Support and Training FBC Consolidator Grant MODEST-647573

Sebastian Sager



S


RITHM

ശ

⊲

Interdisciplinary team effort

Sager (OVGU): MODEST

Fundamental assumption: relevant variables and equations are known!

Fundamental assumption: relevant variables and equations are known!

A) Getting the right set of equations and parameters

• Parameter estimation

Fundamental assumption: relevant variables and equations are known!

A) Getting the right set of equations and parameters

- Parameter estimation
- Optimal experimental design for parameter estimation
- Optimal experimental design for model discremination

- Fundamental assumption: relevant variables and equations are known!
- A) Getting the right set of equations and parameters
 - Parameter estimation
 - Optimal experimental design for parameter estimation
 - Optimal experimental design for model discremination
- B) Optimizing models for analysis
 - High-dose? Low-dose? Singular arcs?

- Fundamental assumption: relevant variables and equations are known!
- A) Getting the right set of equations and parameters
 - Parameter estimation
 - Optimal experimental design for parameter estimation
 - Optimal experimental design for model discremination
- B) Optimizing models for analysis
 - High-dose? Low-dose? Singular arcs?
 - Impact of objective function? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]

- Fundamental assumption: relevant variables and equations are known!
- A) Getting the right set of equations and parameters
 - Parameter estimation
 - Optimal experimental design for parameter estimation
 - Optimal experimental design for model discremination
- B) Optimizing models for analysis
 - High-dose? Low-dose? Singular arcs?
 - Impact of objective function? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]
 - Potential for timing? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]

- Fundamental assumption: relevant variables and equations are known!
- A) Getting the right set of equations and parameters
 - Parameter estimation
 - Optimal experimental design for parameter estimation
 - Optimal experimental design for model discremination
- B) Optimizing models for analysis
 - High-dose? Low-dose? Singular arcs?
 - Impact of objective function? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]
 - Potential for timing? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]
 - Training of clinicians

- Fundamental assumption: relevant variables and equations are known!
- A) Getting the right set of equations and parameters
 - Parameter estimation
 - Optimal experimental design for parameter estimation
 - Optimal experimental design for model discremination
- B) Optimizing models for analysis
 - High-dose? Low-dose? Singular arcs?
 - Impact of objective function? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]
 - Potential for timing? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]
 - Training of clinicians

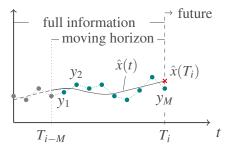
C) Individual medicine

- Fundamental assumption: relevant variables and equations are known!
- A) Getting the right set of equations and parameters
 - Parameter estimation
 - Optimal experimental design for parameter estimation
 - Optimal experimental design for model discremination
- B) Optimizing models for analysis
 - High-dose? Low-dose? Singular arcs?
 - Impact of objective function? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]
 - Potential for timing? \rightarrow [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]
 - Training of clinicians

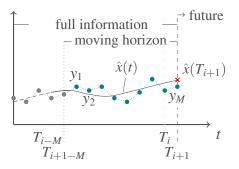
C) Individual medicine

Closed-loop online state and parameter estimation and control

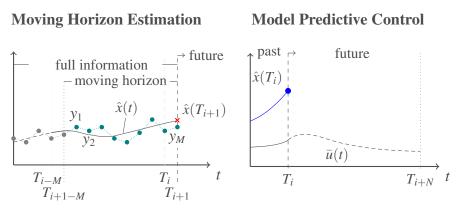
Same schedule for everyone?



The future: Individualized medicine

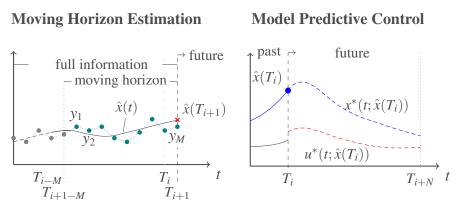

Moving Horizon Estimation

Estimate parameters and states



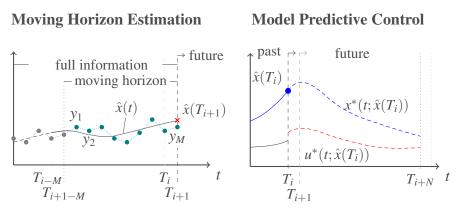
Moving Horizon Estimation

Estimate parameters and states



Estimate parameters and states

Drug choice, dosage, timing



Estimate parameters and states

Drug choice, dosage, timing

Estimate parameters and states

Drug choice, dosage, timing

Outline

1 Introduction to MODEST

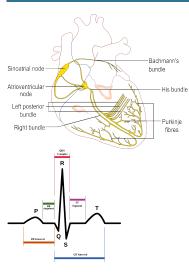
2 Decoding complex cardiac arrhythmia

- 3 Optimal control for leukemia treatment
- 4 Possible other clinical applications

5 Training

- Complex Problem Solving
- Optimization Approach to CPS
- Optimization-based Feedback
- Results of a Web-based Feedback Study

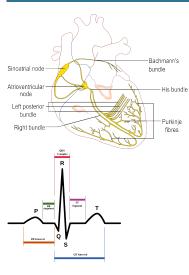
6 Summary

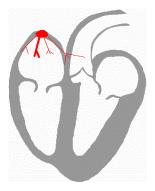


Decoding complex cardiac arrhythmia using mathematical optimization

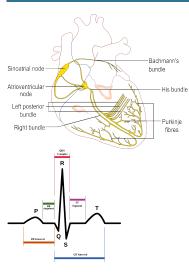
Sebastian Sager, Florian Kehrle, Eberhard Scholz

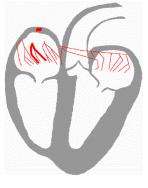
Otto-von-Guericke Universität Magdeburg, Uniklink Heidelberg Będlewo, June 10, 2015



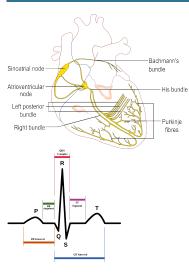


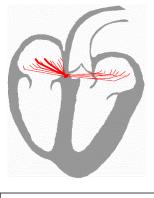
Pacemaker signal in sinoatrial node



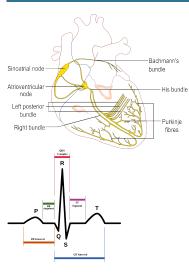


Atrial chambers

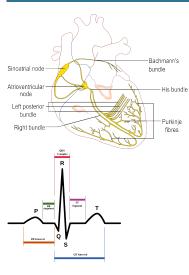




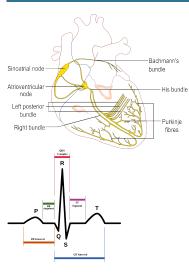
 ${\bf P}$ Atrial depolarization \rightarrow atrial contraction

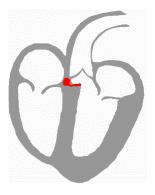


 ${\bf P}$ Atrial depolarization \rightarrow atrial contraction

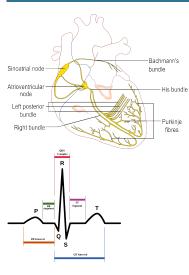


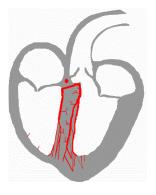
 ${\bf P}$ Atrial depolarization \rightarrow atrial contraction



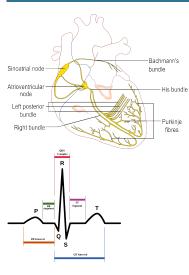


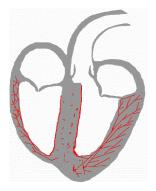
PR Atrioventricular node



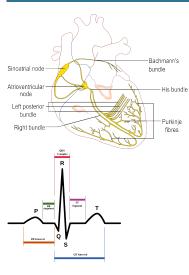


Q Depolarization of the interventricular septum

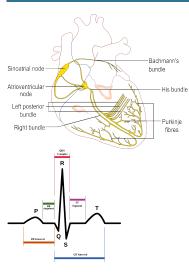




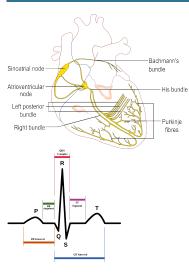
R Polarization of the ventricles



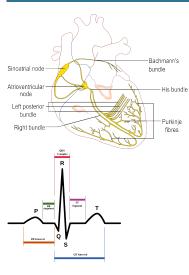
S (De)polarization



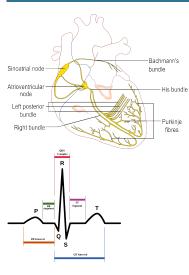
S Depolarization, contraction



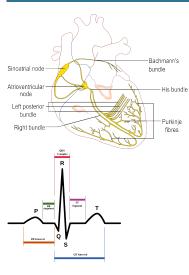
ST Depolarization, contraction



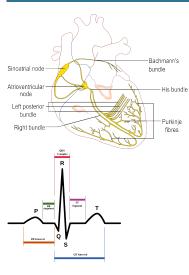
ST Depolarization, contraction



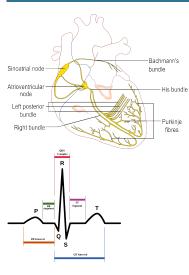
T Secondary excitation



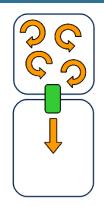
T Secondary excitation



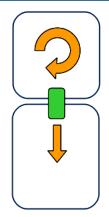
T Secondary excitation

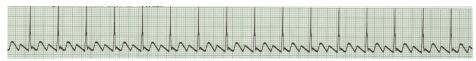


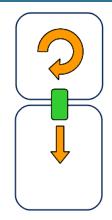
Rest



Rest


• Regular electric impulses are overwhelmed by disorganized ones (non-constant frequency)




- Regular electric impulses (constant frequency) in the atria, may be filtered
- Makes sense: pumping inefficient if too fast

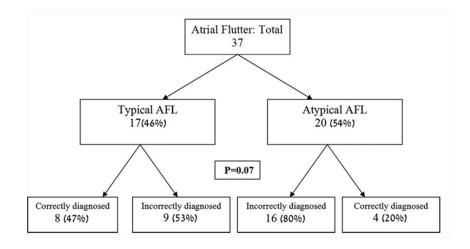
- But: filter may also result in irregular signal!
- Something happening in the AV node?!?

-halandandandandandandanda

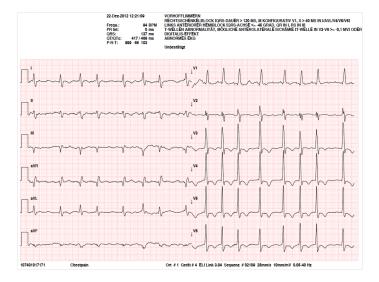
Summary of the decision problem

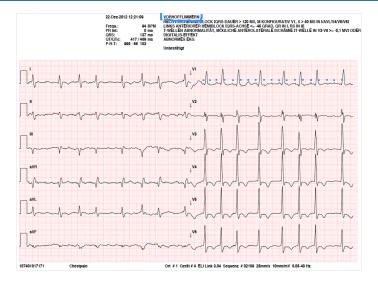
- Two possible reasons for chaotic ECG data (R waves):
 - 1 Atrial fibrillation irregular atrial signal
 - 2 Secondary tachycardia regular atrial signal
- Also different treatments!!
 - 1 Mainly drug treatments
 - **2** Mainly ablation
- More and more appearances of irregular flutter as secondary tachycardia after ablation
- Why should it be difficult to distinguish them from the ECG?

So, what do you think?



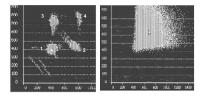
So, what do you think?





So, what do (current) expert systems think?

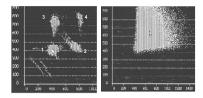
So, what do (current) expert systems think?


Large variety of different approaches possible

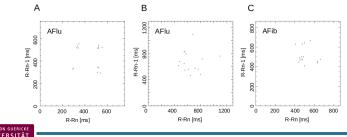
- Mostly based on statistical approaches of RR-intervals:
 - Fourier transforms
 - Wavelets
 - Machine learning
 - Bayesian logic
 - Nonlinear time series analysis

Large variety of different approaches possible

- Mostly based on statistical approaches of RR-intervals:
 - Fourier transforms
 - Wavelets
 - Machine learning
 - Bayesian logic
 - Nonlinear time series analysis
 - Clustering of RR times [Esperer et al. 2008 ANE]

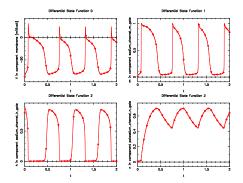

AFlu

AFib


Large variety of different approaches possible

- Mostly based on statistical approaches of RR-intervals:
 - Fourier transforms
 - Wavelets
 - Machine learning
 - Bayesian logic
 - Nonlinear time series analysis
 - Clustering of RR times [Esperer et al. 2008 ANE]

AFlu


The Noble model [Noble, D. 1962 Journal of Physiology]

- ODEs model action potential based on Hodgkin-Huxley equations [Nobel Prize 1963]
- The electrical potential V across the membrane changes due to ionic currents
- Sodium current in channels *m* and *h*, potassium current *n*

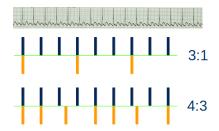
$$\begin{aligned} \frac{\mathrm{d}V}{\mathrm{d}t} &= -\frac{i_{Na} + i_{K} + i_{Leak}}{Cm} = -\frac{(4 \cdot 10^{5}m^{3}h + 140)(V - E_{Na})}{Cm} \\ &- \frac{(1200e^{\frac{-V - 90}{50}} + 15e^{\frac{V + 90}{60}}(V - E_{K}) + 1200n^{4}(V - E_{K}) + 75(V - E_{An})}{Cm} \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \frac{100(-V - 48)}{\exp((-V - 48)/15) - 1}(1 - m) - \frac{120(V + 8)}{\exp((V + 8)/5) - 1}m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= 170\exp(\frac{-V - 90}{20})(1 - h) - \frac{1000}{1 + \exp((-V - 42)/10)}h \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \frac{0.1(-V - 50)}{\exp((-V - 50)/10) - 1}(1 - n) - \exp(\frac{-V - 90}{80})n \end{aligned}$$

Simulation of Noble model [Noble, D. 1962 Journal of Physiology]

- · Successfully predicted several (unknown) phenomena
- Many extensions, models with ≈ 100 states or PDEs [D. Noble, 2012]
- One extension: calcium ion channels
- Tough optimization problems [Lebiedz & Sager, Physical Review Letters, 2005]

Phenomenological approach

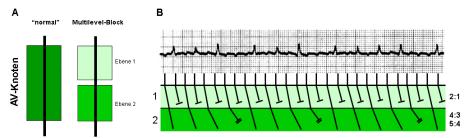
- Important & difficult to distinguish between fibrillation and flutter
- Exiting approaches have shortcomings, not real-time feasible



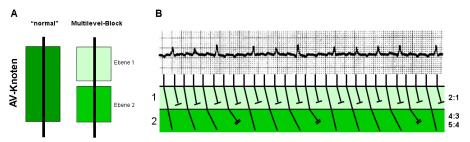
Phenomenological approach

- Important & difficult to distinguish between fibrillation and flutter
- Exiting approaches have shortcomings, not real-time feasible
- Idea: let us look at simpler phenomenological models
- Well known in medicine: different kinds of AV blocks

Type Mobitz I


Type Mobitz II (Wenckebach) Linear prolongation of intervals

Multilevel approach


• Idea: consider sequential filters of this simple type!

Multilevel approach

• Idea: consider sequential filters of this simple type!

- 1912: Detection of ventricular arrhythmia for atrial flutter
- 1950: Implication of two block levels
- 1975: first EPU indicating localisation of block (= AV node!)
- 1976: Called "Multilevel AV-Block" [Kosowsky et al. 1976 Circulation]
- 1982: last high-impact paper on this topic

Input : n_{α} incoming time points α_i , transit data τ_{con} **Output**: n_{β} time points β_j after Mobitz–type block begin

* /

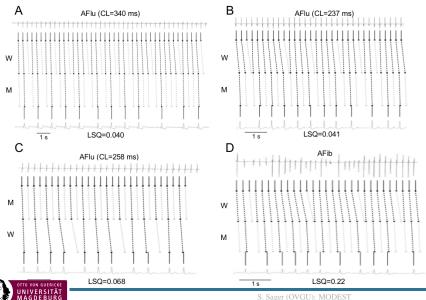
Basic idea of our approach

• Published in [Scholz, E.P., Kehrle, F., Vossel, S., Hess, A., Zitron, E., Katus, H.A., Sager, S., Discriminating atrial flutter

from atrial fibrillation using a multilevel model of atrioventricular conduction, Heart Rhythm, 2014, 11(5), 877-884]

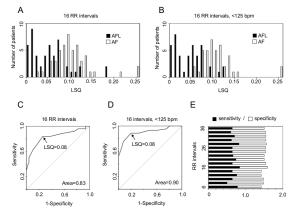
- Regard the inputs to simulation as optimization variables
 - Regular signal $\Delta \alpha_i = \Delta \alpha$ in atrium
 - Number n_{lvl} and type π^j of levels
 - Transit data τ_{con}^{j} , τ_{inc}^{j} and refrac time τ_{ref}^{j} for all levels
- Minimize deviation of forward simulation from ventricular data

Basic idea of our approach


• Published in [Scholz, E.P., Kehrle, F., Vossel, S., Hess, A., Zitron, E., Katus, H.A., Sager, S., Discriminating atrial flutter

from atrial fibrillation using a multilevel model of atrioventricular conduction, Heart Rhythm, 2014, 11(5), 877-884]

- Regard the inputs to simulation as optimization variables
 - Regular signal $\Delta \alpha_i = \Delta \alpha$ in atrium
 - Number n_{lvl} and type π^j of levels
 - Transit data τ_{con}^{j} , τ_{inc}^{j} and refrac time τ_{ref}^{j} for all levels
- Minimize deviation of forward simulation from ventricular data
- Verify / falsify hypothesis "atrial flutter":
 - Objective small \Rightarrow indication for atrial flutter
 - Objective high \Rightarrow indication for atrial fibrillation


Discrimination Examples [Scholz et al., Heart Rhythm, 2014]

S. Sager (OVGU): MODEST

Discrimination Results [Scholz et al., Heart Rhythm, 2014]

- Based on ECG data of ≈ 100 patients in Heidelberg
- Comparison to intracardiac measurements, verified by two experts
- Sensitivity 79%, specificity 100%. RR statistics only 58% / 24%!

Mathematical algorithms in clinical practice

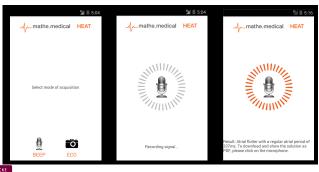
- GmbH founded in Heidelberg 2014
- Dissemination: App is 1 possibility

Mathematical algorithms in clinical practice

- GmbH founded in Heidelberg 2014
- Dissemination: App is 1 possibility

Mathematical algorithms in clinical practice

- GmbH founded in Heidelberg 2014
- Dissemination: App is 1 possibility



Mathematical algorithms in clinical practice

- GmbH founded in Heidelberg 2014
- Dissemination: App is 1 possibility

Outline

1 Introduction to MODEST

2 Decoding complex cardiac arrhythmia

3 Optimal control for leukemia treatment

4 Possible other clinical applications

5 Training

- Complex Problem Solving
- Optimization Approach to CPS
- Optimization-based Feedback
- Results of a Web-based Feedback Study

6 Summary

K. RINKE · R. BARTSCH · R. FINDEISEN · T. FISCHER · K. RINKE · E. SCHALK · S. SAGER

Mathematical modelling and simulation of Acute Myeloid Leukemia

Otto-von-Guericke Universität Magdeburg Mathematical Algorithmic Optimization Group Faculty of Mathematics Otto-von-Guericke University Magdeburg

Poster session yesterday

General remarks: chemotherapy planning

Obviously cancer growth is a complex dynamic process:

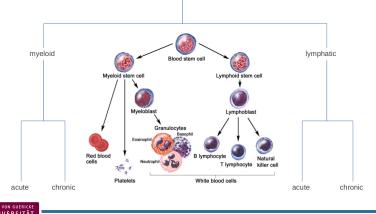
- Dynamic
- Nonlinear
- Delays
- High-dimensional
- Conflicting objectives
- Hard constraints
- Interaction with angiogenesis, immune-system, cell survival, ...

Intuition: optimal control should be able to help giving decision support for oncologists!

- Literature survey: how useful are models?
- Until today mathematical models far away from reality!

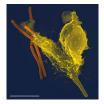
- Literature survey: how useful are models?
- Until today mathematical models far away from reality!

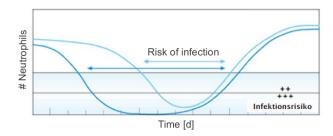
Idea:


- Maximize tumor size at the end with same amount of drugs?
- Allows comparison with minimization \rightarrow potential of timing!

Showed: very dependent on mathematical model, but worth the effort!

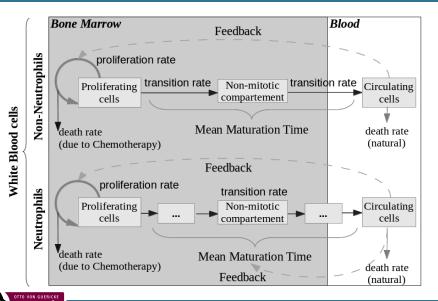
Acute myeloid leukemia


Leukemia: abnormal increase of immature white blood cells called "blasts" Myeloid: relates to granulocyte precursor (blood-forming) cells in bone marrow Acute: characterized by rapid increase; bone marrow is unable to produce healthy blood cells and an immediate treatment is required

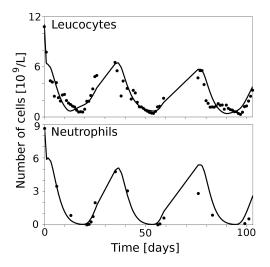

Neutropenia in AML

Neutrophils

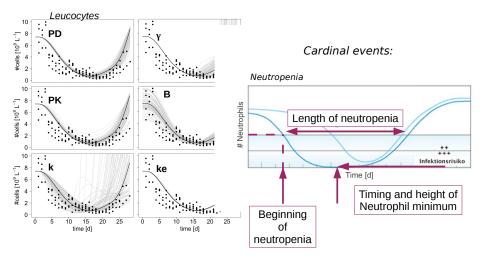
- form an essential part of the innate immune system
- can ingest other cells (e.g. invasive bacteria)



During AML Therapy:



Schematic Mathematical Model [based on Quartino2012, Pefani2013]



Modeling neutropenia during chemotherapy

Sensitivity analysis

• Monte Carlo (100 realisations per parameter, CV 25%)

Outline

1 Introduction to MODEST

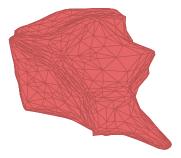
- 2 Decoding complex cardiac arrhythmia
- 3 Optimal control for leukemia treatment

4 Possible other clinical applications

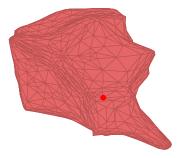
5 Training

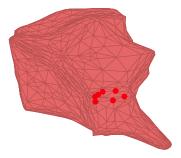
- Complex Problem Solving
- Optimization Approach to CPS
- Optimization-based Feedback
- Results of a Web-based Feedback Study

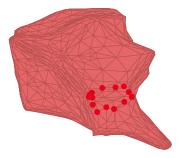
6 Summary

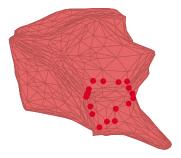


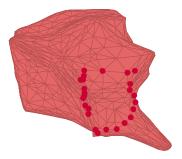
Source detection for extrasystoles

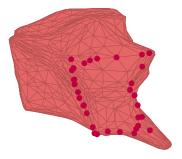

- Certain heart area needs ablation to avoid extrasystoles
- Common practice: measure time delay of wave at several points
- Search (based on experience and trial-and-error) source area
- Idea: can we minimize the number of measurements?

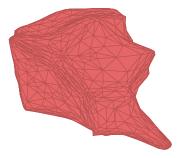

- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation

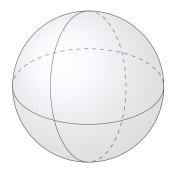

- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation


- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation

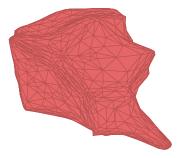

- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation


- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation

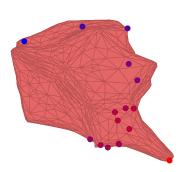

- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation

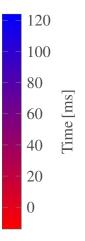


- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation

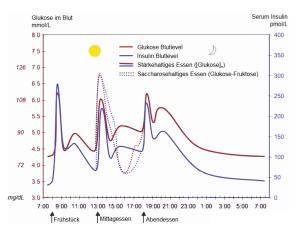


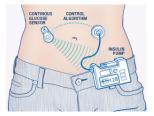
- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation




- Cardiac tissue
- Rhythmic heart beat
- Cardiac Excitation

Measurement data





Optimal control of insulin pumps

- Automatic control already used in practice
- Do this adaptively / optimally?



Modeling and simulation of Polycythaemia Vera

- neoplasm in which the bone marrow makes too many red blood cells
- only cure: "breathing a vein" (blood-letting)
- difficult scheduling of appointments!

Outline

- 1 Introduction to MODEST
- 2 Decoding complex cardiac arrhythmia
- 3 Optimal control for leukemia treatment
- 4 Possible other clinical applications

5 Training

- Complex Problem Solving
- Optimization Approach to CPS
- Optimization-based Feedback
- Results of a Web-based Feedback Study

6 Summary

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

Analysis and Training of Human Decision Making

Michael Engelhart, Joachim Funke, Sebastian Sager

Otto-von-Guericke Universität Magdeburg, Uni Heidelberg Będlewo, June 10, 2015

Optimization in practice ...

• a key technology for 21st century, enabling progress&prosperity

Optimization in practice ...

- a key technology for 21st century, enabling progress&prosperity
- risks to increase the gap compared to human decision making

Optimization in practice ...

- a key technology for 21st century, enabling progress&prosperity
- risks to increase the gap compared to human decision making

Question: can optimization also be used to train humans?

Optimization in practice ...

- a key technology for 21st century, enabling progress&prosperity
- risks to increase the gap compared to human decision making

Question: can optimization also be used to train humans?

Questions to you:

• Who thinks to perform better (without algorithms) in finding a good solution to a random optimization problem "within your area of expertise" compared to an average citizen?

Optimization in practice ...

- a key technology for 21st century, enabling progress&prosperity
- risks to increase the gap compared to human decision making

Question: can optimization also be used to train humans?

Questions to you:

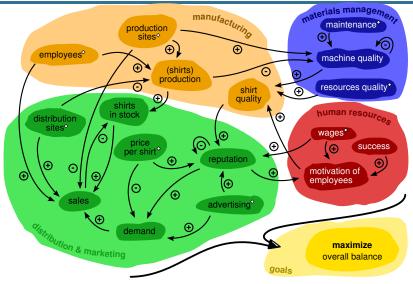
- Who thinks to perform better (without algorithms) in finding a good solution to a random optimization problem "within your area of expertise" compared to an average citizen?
- Who thinks this has to do with having seen optimal solutions and sensitivities of similar optimization problems?

Complex Problem Solving

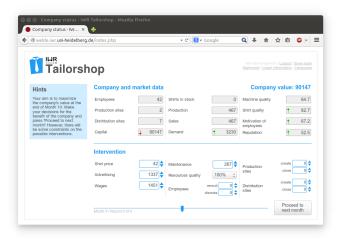
- Humans are asked to solve a given complex problem
- Interest of psychologists: correlation to emotion regulation etc.
- Gets more attention: included in future PISA evaluations

Complex Problem Solving

- Humans are asked to solve a given complex problem
- Interest of psychologists: correlation to emotion regulation etc.
- Gets more attention: included in future PISA evaluations
- Most problems nowadays computer-based test-scenarios
- Tailorshop: one of the most famous ones (fruitfly of CPS)
- Developped in the 1980s (Dörner et al.)


Complex Problem Solving

- Humans are asked to solve a given complex problem
- Interest of psychologists: correlation to emotion regulation etc.
- Gets more attention: included in future PISA evaluations
- Most problems nowadays computer-based test-scenarios
- Tailorshop: one of the most famous ones (fruitfly of CPS)
- Developped in the 1980s (Dörner et al.)
- Participant has to run shirt company
- Round-based scenario
- Aim: maximize overall capital of company


The IWR Tailorshop

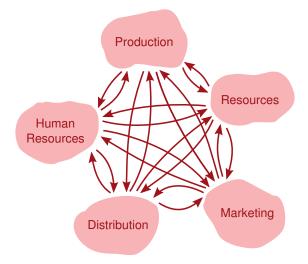
OTTO VON GUERICKE UNIVERSITÄT MAGDEBURG [Engelhart, Funke, S., Journal of Computational Science, 2013]

Diamonds indicate influence of participant's decisions.

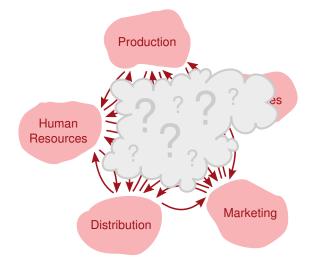
IWR Tailorshop web interface

• implementation with AJAX, PHP using a MySQL database

adaptive interface for mobile devices

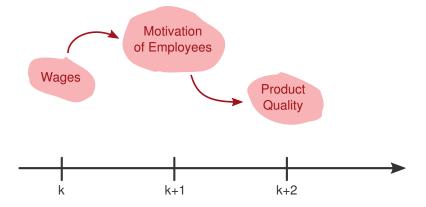

UNIVERSITÄT MAGDEBURG

Complex Problems: Complexity



Complex Problems: Interdependence

Complex Problems: Intransparency


Complex Problems: Dynamics

Complex Problems: Dynamics

Complex Problems: mixed-integer decisions

- Continuous decisions, e.g., wages
- Discrete decisions, e.g., open/close a distribution site

Optimization and Complex Problem Solving

- First: use optimization to define interesting microworld
- Bounded solution, multiple local maxima, important / unimportant decisions, ...

Optimization and Complex Problem Solving

- First: use optimization to define interesting microworld
- Bounded solution, multiple local maxima, important / unimportant decisions, ...
- Second:

optimal solution as performance indicator!

Optimization and Complex Problem Solving

- First: use optimization to define interesting microworld
- Bounded solution, multiple local maxima, important / unimportant decisions, ...
- Second:

optimal solution as performance indicator!

• Simple test-scenarios (e.g. Tower of Hanoi): optimal solution known

- Complex test-scenarios: optimal solution **unknown**
- Third: can optimal solutions be used for training?

Formulate abstract optimization problem

- Same mathematical model (equations) for all tasks
- Dynamic model with discrete time $k = 0 \dots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
- Scenario specified by initial values x_0 and parameters p

Formulate abstract optimization problem

- Same mathematical model (equations) for all tasks
- Dynamic model with discrete time $k = 0 \dots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
- Scenario specified by initial values x_0 and parameters p
- First: use optimization to define interesting microworld:
- \rightarrow determine initial values x_0 and parameters p

Formulate abstract optimization problem

- Same mathematical model (equations) for all tasks
- Dynamic model with discrete time $k = 0 \dots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
- Scenario specified by initial values x_0 and parameters p
- First: use optimization to define interesting microworld: \rightarrow determine initial values x_0 and parameters p
 - Second and Third: analysis and training
- \rightarrow find decisions u_k to maximize objective function
- \rightarrow Compare participant's performance to optimal solution
- \rightarrow Provide feedback on better choice for learning

IWR Tailorshop states

States	Variable	Unit
employees	x^{EM}	person(s)
production sites	x^{PS}	site(s)
distribution sites	x^{DS}	site(s)
shirts in stock	x^{SH}	shirt(s)
production	x^{PR}	shirt(s)
sales	x^{SA}	shirt(s)
demand	x^{DE}	shirt(s)
reputation	x^{RE}	
shirts quality	x^{SQ}	
machine quality	x^{MQ}	_
motivation of employees	x^{MO}	
capital	x^{CA}	M.U.

M.U. means monetary units.

Controls	Variable	Unit
shirt price	<i>u^{SP}</i>	M.U/ _{shirt}
advertising	u^{AD}	M.U.
wages	u^{WA}	M.U/person
maintenance	u^{MA}	M.U.
resources quality	u^{RQ}	
recruit/dismiss employees	u^{dEM}/u^{DEM}	person(s)
create/close production site	u^{dPS}/u^{DPS}	site(s)
create/close distribution site	u^{dDS}/u^{DDS}	site(s)

M.U. means monetary units.

IWR Tailorshop example model equations

State equations: $x_{k+1} = G(x_k, x_{k+1}, u_k, p)$

$$\begin{aligned} x_{k+1}^{EM} &= x_{k}^{EM} - u_{k}^{dEM} + u_{k}^{DEM} \\ x_{k+1}^{DE} &= p^{DE,0} \cdot \exp\left(-p^{DE,1} \cdot u_{k}^{SP}\right) \cdot \log\left(p^{DE,2} \cdot u_{k}^{AD} + 1\right) \cdot \left(x_{k}^{RE} + p^{DE,3}\right) \\ x_{k+1}^{SA} &= \min\left\{p^{SA,0} \cdot x_{k+1}^{DS} \cdot \log\left(\frac{p^{SA,1} \cdot x_{k+1}^{EM}}{x_{k+1}^{PS} + x_{k+1}^{DS} + p^{SA,2}} + 1\right); x_{k}^{SH} + x_{k+1}^{PR}; p^{SA,3} \cdot x_{k+1}^{DE}\right\} \end{aligned}$$

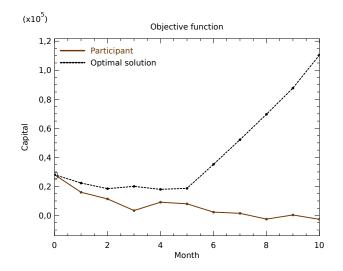
. . .

Second and Third: Optimization problem

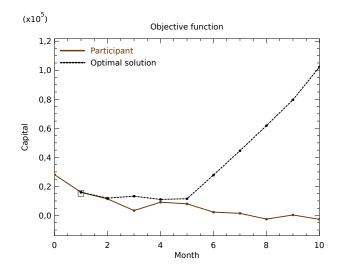
$$\max_{\boldsymbol{x},\boldsymbol{u}} F(\boldsymbol{x}_{N})$$

s.t.
$$\boldsymbol{x}_{k+1} = G(\boldsymbol{x}_{k},\boldsymbol{u}_{k},\boldsymbol{p}), \quad k = n_{s} \dots N - 1,$$
$$0 \leq H(\boldsymbol{x}_{k},\boldsymbol{u}_{k},\boldsymbol{p}), \quad k = n_{s} \dots N - 1,$$
$$\boldsymbol{u}_{k} \in \Omega, \qquad k = n_{s} \dots N - 1,$$
$$\boldsymbol{x}_{n_{s}} = \boldsymbol{x}_{n_{s}}^{p}.$$

- Dynamic model with discrete time $k = 0 \dots N$
- Nonconvex mixed-integer nonlinear program

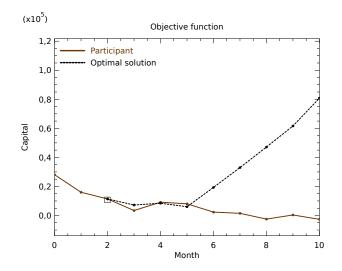


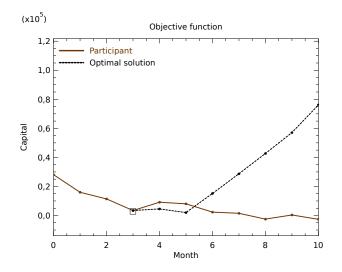
Second and Third: Optimization problem

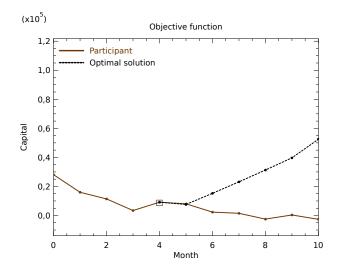

$$\max_{\boldsymbol{x},\boldsymbol{u}} F(\boldsymbol{x}_{N})$$

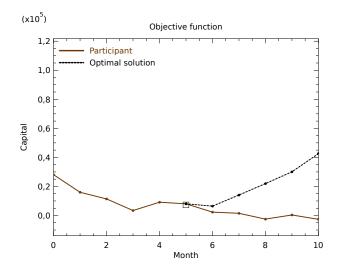
s.t.
$$\boldsymbol{x}_{k+1} = G(\boldsymbol{x}_{k},\boldsymbol{u}_{k},\boldsymbol{p}), \quad k = n_{s} \dots N - 1,$$
$$0 \leq H(\boldsymbol{x}_{k},\boldsymbol{u}_{k},\boldsymbol{p}), \quad k = n_{s} \dots N - 1,$$
$$\boldsymbol{u}_{k} \in \Omega, \qquad k = n_{s} \dots N - 1,$$
$$\boldsymbol{x}_{n_{s}} = \boldsymbol{x}_{n_{s}}^{p}.$$

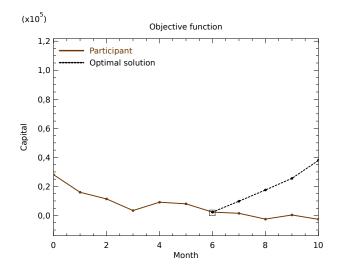
- Dynamic model with discrete time $k = 0 \dots N$
- Nonconvex mixed-integer nonlinear program
- Starting at month n_s with same data $x_{n_s}^p$ as participant
- Need to solve N 1 optimization problems per participant



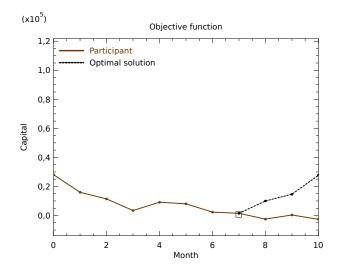




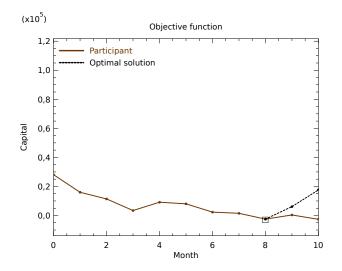



MAGDEBUR

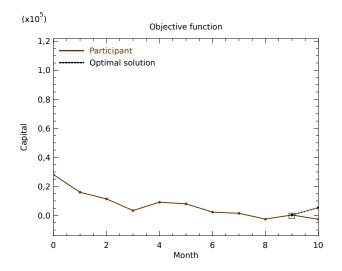
S. Sager (OVGU): MODEST

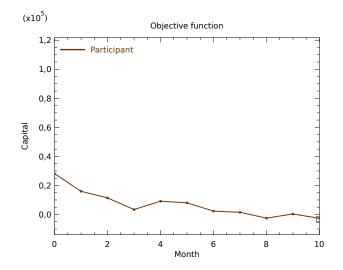


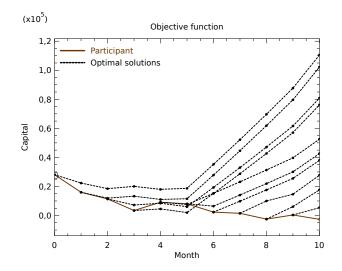
MAGDEBUR

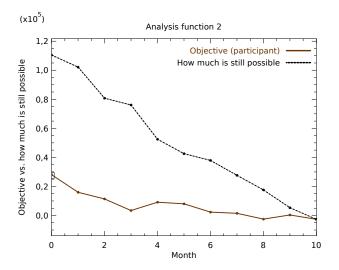


S. Sager (OVGU): MODEST

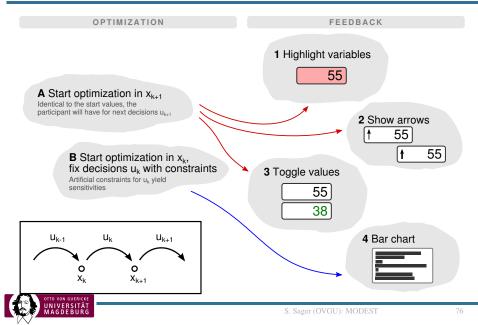








How Much Is Still Possible



Have to work a little (N optimization problems) to get it. But:

- provides objective performance measure
- allows time- and decision-specific analysis of what went wrong
- Details in [S., Barth, Diedam, Engelhart, Funke, Optimization as an analysis tool for human complex problem solving, SIAM Journal of Optimization, 2011]

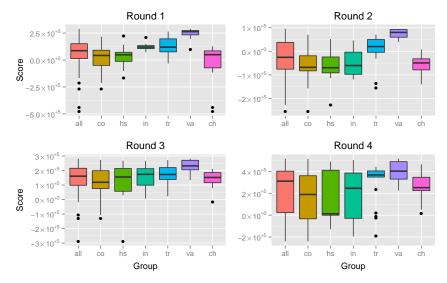
Third use: Optimization-based Feedback

Web-based feedback study

- study conducted Nov/Dec 2013
- IWR Tailorshop web interface
- participants recruited in lectures and social networks
- 100 complete datasets

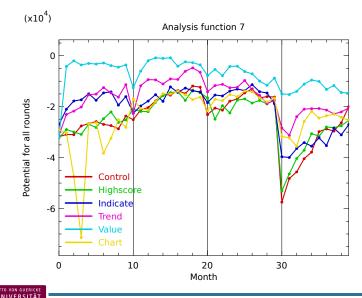
Web-based feedback study

- study conducted Nov/Dec 2013
- IWR Tailorshop web interface
- participants recruited in lectures and social networks
- 100 complete datasets
- 4 rounds of 10 "months" each, different initial values
 - 2 rounds (= 20 months) with feedback (goal: learning)
 - 2 rounds (= 20 months) without (goal: performance)



Web-based feedback study

- study conducted Nov/Dec 2013
- *IWR Tailorshop* web interface
- participants recruited in lectures and social networks
- 100 complete datasets
- 4 rounds of 10 "months" each, different initial values
 - 2 rounds (= 20 months) with feedback (goal: learning)
 - 2 rounds (= 20 months) without (goal: performance)
- Feedback in 6 **randomized groups**: control, highscore, highlight, arrows, value, chart


Study results: feedback groups

ontrol, hi=highscore, in=highlight variable, tr=show arrows, va=show values, ch=sensitivity chart)

Study results: use of potential

- (A) participants with opt.-based feedback perform better overall
- (B) participants with opt.-based feedback perform better in feedback rounds
- (C) participants with opt.-based feedback perform better in performance rounds
- (D) control group performs worst
- (E) control group performs worse than opt.-based groups in performance rounds
- (F) trend group performs best overall
- (G) trend group performs best in performance rounds
- (H) value group performs best in feedback rounds

Hypothesis

 \checkmark

- (I) value group performs better in feedback rounds, worse (\checkmark) in performance rounds
- (J) participants with high BFI-10 values perform worse/better
- (K) participants who play computer games regularly perform better
- (L) participants interested in economics perform better
- (M) participants who solve problems systematically perform better
- (N) control group needs more time than opt.-based feedback groups
- (O) well-performers know more about the model

Hypothesis

Proved

 (\checkmark)

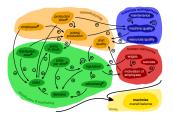
- (P) participants who know much about the model, perform \checkmark well
- (Q) value group knows less, trend group knows most about $-/\sqrt{}$ the model
- (1) participants learn to control the model
- (2) learning function is approximately logarithmic
- (3) optimization-based feedback groups learn faster
- (4) *value* group does almost not learn in feedback rounds
- (5) *trend* group learns fastest

Hypothesis				
(6)	participants who learn much, perform well	?		
(7)	participants who perform well, learned much	?		
(8)	participants with high model knowledge learned more	\checkmark		
(9)	initial performance is not important for final performance	\checkmark		
(10)	chart group suffered from feedback	(\checkmark)		

IWR Tailorshop: global solutions?

- Nonconvex mixed-integer nonlinear program
- Need global solutions! Can we use Couenne or Baron?

IWR Tailorshop: global solutions?


- Nonconvex mixed-integer nonlinear program
- Need global solutions! Can we use Couenne or Baron?
- But: for N = 1: 0.9 sec, for N = 2: 12 sec, for N = 3: $\gg 10 \text{ min} \dots$
- Interesting effects (investment paying off) for $N \ge 5$.

IWR Tailorshop: global solutions?

- Nonconvex mixed-integer nonlinear program
- Need global solutions! Can we use Couenne or Baron?
- But: for N = 1: 0.9 sec, for N = 2: 12 sec, for N = 3: $\gg 10 \text{ min} \dots$
- Interesting effects (investment paying off) for $N \ge 5$.
- Developed tailored decomposition approach for tight bounds (fast)
- [Engelhart, Funke, S., A Decomposition Approach for a New Test-Scenario in Complex Problem Solving, Journal of Computational Science, 2013]

employed*	Company status - M R write in an includeborg UR Tailorsh	• Inforder, phy	let for	• c) 👪	Ceogla	Q + +		
	Hints	Company and a	arket data			Company	value: 901-	47
	Text aim is to movimosi the company's vilke at the	Employees	42	Shirts in stock		Nochine quality	64	6
distribution /	and of blonds the block	Productor also	2	P100.0301	442	prot-quarty	1 60	68
	banafit of the company and press Proceed to next	Disbladur altes	3	Lines.	467	Ridvalus of prophysics	+ 42	2
	be same constraints on the possible interventions.	Capital	4 90147	Denand	1200	Pepulation	t 53	a l
		Intervention Grid proc Advertising Hinges	42 1337 1451 \$	Mathematice Researces quality Employees	200 300% 	Production sites Cabination sites	onate 0 000 0 000000	110 110 100

- Optimization 1) to design microworld 2) to analyze 3) to train
- Online study with 100 participants:
 - Participants with optimization feedback in training rounds perform better and have more model knowledge!
 - But depends on type of feedback! General effect? \rightarrow future work!
- Goal: use same approach for analysis and training of medical decision making

Summary

- Systematic & synergetic modeling and optimization approach
- Three uses: get good microworld, analysis, and training

Summary

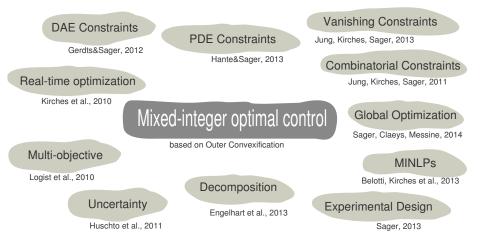
- Systematic & synergetic modeling and optimization approach
- Three uses: get good microworld, analysis, and training
- Challenging MINLPs solved by tailored decomposition
- Web-based study with 100 complete datasets: optimization-based feedback can make a significant difference
- Details can be found in:
- [Engelhart, Funke, S., A Decomposition Approach for a New Test-Scenario in Complex Problem Solving, Journal of Computational Science, 2013]
- [S., Barth, Diedam, Engelhart, Funke, Optimization as an analysis tool for human complex problem solving, SIAM Journal of Optimization, 2011]
- Engelhart, PhD thesis, University of Heidelberg, 2015]

Outline

- 1 Introduction to MODEST
- 2 Decoding complex cardiac arrhythmia
- 3 Optimal control for leukemia treatment
- 4 Possible other clinical applications

5 Training

- Complex Problem Solving
- Optimization Approach to CPS
- Optimization-based Feedback
- Results of a Web-based Feedback Study


6 Summary

- Interested in dynamic processes
- Approach:
 - Find mathematical model (variables, equations, constraints)
 - Calibrate parameters to fit measurements (patient-specific)
 - Optimize over degrees of freedom
 - Interact with medical doctor

Issues in mixed-integer optimal control

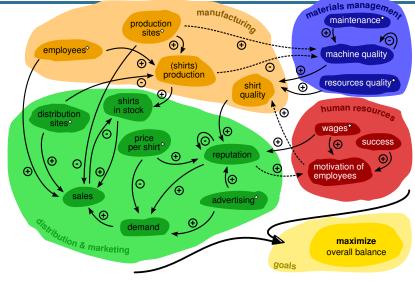
IWR Tailorshop objective function

$$\begin{aligned} x_{k+1}^{CA} &= p^{CA,0} \cdot \left(x_k^{CA} + \left(x_{k+1}^{SA} \cdot u_k^{SP} \right) - \left(x_{k+1}^{EM} \cdot u_k^{WA} \right) - u_k^{AD} - \left(x_{k+1}^{SH} \cdot p^{CA,6} \right) \right. \\ &- \left(x_{k+1}^{PR} \cdot u_k^{RQ} \cdot p^{CA,3} \right) - u_k^{MA} - \left(x_k^{PS} \cdot p^{CA,4} \right) - \left(x_k^{DS} \cdot p^{CA,5} \right) \\ &+ \left(u_k^{dPS} \cdot p^{CA,1} \right) + \left(u_k^{dDS} \cdot p^{CA,2} \right) - \left(u^{DPS} \cdot p^{CA,7} \right) - \left(u^{DDS} \cdot p^{CA,8} \right) \right) \end{aligned}$$

Objective function:

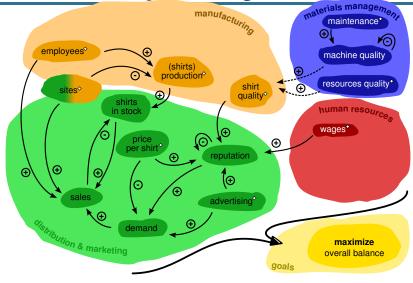
$$F(x_N) = x_N^{CA}$$

IWR Tailorshop objective function


$$\begin{split} \tilde{x}_{k+1}^{CA} &= p^{CA,0} \cdot \left(x_k^{CA} + \left(x_{k+1}^{SA} \cdot u_k^{SP} \right) - \left(x_{k+1}^{EM} \cdot u_k^{WA} \right) - u_k^{AD} - \left(x_{k+1}^{SH} \cdot p^{CA,6} \right) \\ &+ f_1 \left(x_{k+1}^{PR}, u_k^{SQ} \right) + f_2 \left(x_k^{PS}, x_k^{DS}, x_{k+1}^{PR}, x_{k+1}^{EM} \right) \\ &+ \left(u_k^{dPS} \cdot p^{CA,1} \right) + \left(u_k^{dDS} \cdot p^{CA,2} \right) - \left(u^{DPS} \cdot p^{CA,7} \right) - \left(u^{DDS} \cdot p^{CA,8} \right) \end{split}$$

Objective function:

$$\tilde{F}(x_N) = \tilde{x}_N^{CA}$$

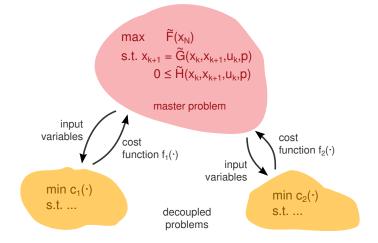

The IWR Tailorshop: reducing the model

Diamonds indicate (influence of) free variables.

The IWR Tailorshop: reducing the model

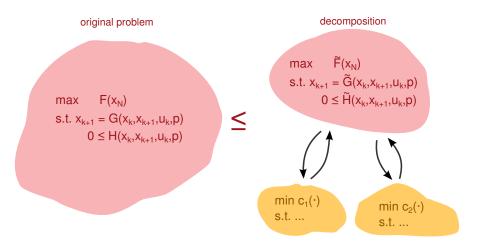
Diamonds indicate (influence of) free variables.

- Idea: split problem up to get (at least) good upper bound
- Comparable to Lagrangian Relaxation approaches
- One master problem, several decoupled problems
- Coupled via the newly introduced cost functions f_1 and f_2 for the decoupled problems


Decomposition approach

 $\begin{array}{ll} \max & F(x_N) \\ \text{s.t. } x_{k+1} = G(x_k, x_{k+1}, u_k, p) \\ & 0 \leq H(x_k, x_{k+1}, u_k, p) \end{array}$

original problem



Decomposition approach

Decomposition approach

Original problem vs. decomposition

n _x	Original *	Decomposition *	Gap in %
1	189750.1	198795.0	4.5 %
2	195925.0	208899.3	6.2 %
3	202285.2	219306.8	7.8~%
4	208836.2	230026.5	9.2 %
5	215583.8	241067.7	10.6 %
6	222533.7	252440.2	11.8 %
7	229692.2	264153.9	13.0 %
8	237065.4	276219.0	14.2 %
9	244659.8	288646.0	15.2 %
10	252482.0	301445.9	16.2 %

* Using Bonmin (local solver) for original, Couenne (global solver) for decomposition.

Computation times similar ($\ll 1 \min$).

