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Clinical decision making

• Clinical practice 7→ ubiquitous decision making for physicians
• Difficult! Patient- and situation-dependent, non-intuitive, high work

load, time constraints, knowledge transfer, . . .

• We want to develop mathematical tools (modeling, simulation, and
optimization) to support and train clinical decision making

Sager (OVGU): MODEST 3
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Clinical decision training

Simulation:
Optimization:

what would happen if... ?
what would be best?
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Personalized medicine via optimization
Simulation:
  warnings and alerts
  what would happen if...?

Optimization:
  fit models to patient data
  get patient-specific treatment
  get patient-specific diagnosis

e.g., for cardiac arrhythmia

Probability for Atrial Fibrillation: 85%

Probability for Atrial Flutter: 93%

Clinical decision training
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Optimization:
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Mixed-integer nonlinear optimal control
Uncertainties, e.g.,
  model-plant mismatch
  patient-specific parameters
Integrality, e.g.,
  which combination of drugs?
  Wenckebach or Mobitz block?
Global optima needed
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So how can optimization help?
Fundamental assumption: relevant variables and equations are known!

A) Getting the right set of equations and parameters
• Parameter estimation
• Optimal experimental design for parameter estimation
• Optimal experimental design for model discremination

B) Optimizing models for analysis
• High-dose? Low-dose? Singular arcs?
• Impact of objective function? → [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]

• Potential for timing? → [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]

• Training of clinicians

C) Individual medicine
• Closed-loop online state and parameter estimation and control
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Same schedule for everyone?
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The future: Individualized medicine
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Online Optimization

Moving Horizon Estimation

tTi−M

full information
moving horizon

Ti

future

x̂(t)

y1

y2

yM

x̂(Ti)

Ti+1

Estimate parameters and states
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Decoding complex cardiac arrhythmia
using mathematical optimization

Sebastian Sager, Florian Kehrle, Eberhard Scholz

Otto-von-Guericke Universität Magdeburg,
Uniklink Heidelberg
Bȩdlewo, June 10, 2015
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Reminder: the human heart [Images: Wikipedia]

Pacemaker signal in sinoatrial node
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Reminder: the human heart [Images: Wikipedia]

Atrial chambers
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P Atrial depolarization→ atrial contraction
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Reminder: the human heart [Images: Wikipedia]

PR Atrioventricular node
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Reminder: the human heart [Images: Wikipedia]

Q Depolarization of the interventricular septum
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Reminder: the human heart [Images: Wikipedia]

R Polarization of the ventricles
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Reminder: the human heart [Images: Wikipedia]

S (De)polarization
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Reminder: the human heart [Images: Wikipedia]

S Depolarization, contraction
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Reminder: the human heart [Images: Wikipedia]

T Secondary excitation
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Reminder: the human heart [Images: Wikipedia]

Rest
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Atrial Fibrillation

• Regular electric impulses are overwhelmed by
disorganized ones (non-constant frequency)

S. Sager (OVGU): MODEST 21



Atrial Flutter

• Regular electric impulses (constant frequency) in
the atria, may be filtered

• Makes sense: pumping inefficient if too fast
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Atypical Atrial Flutter

• But: filter may also result in irregular signal!
• Something happening in the AV node?!?

S. Sager (OVGU): MODEST 23



Summary of the decision problem

• Two possible reasons for chaotic ECG data (R waves):
1 Atrial fibrillation – irregular atrial signal
2 Secondary tachycardia – regular atrial signal

• Also different treatments!!
1 Mainly drug treatments
2 Mainly ablation

• More and more appearances of irregular flutter as secondary
tachycardia after ablation

• Why should it be difficult to distinguish them from the ECG?

S. Sager (OVGU): MODEST 24



So, what do you think?
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So, what do experts think? [Shiyovich et al. 2010 Am J Med Sci]
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So, what do (current) expert systems think?
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Large variety of different approaches possible
Mostly based on statistical approaches of RR-intervals:

• Fourier transforms
• Wavelets
• Machine learning
• Bayesian logic
• Nonlinear time series analysis

• Clustering of RR times [Esperer et al. 2008 ANE]
AFlu AFib
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The Noble model [Noble, D. 1962 Journal of Physiology]

• ODEs model action potential based on Hodgkin-Huxley equations [Nobel Prize 1963]

• The electrical potential V across the membrane changes due to ionic currents

• Sodium current in channels m and h, potassium current n

dV
dt

= − iNa + iK + iLeak

Cm
= − (4 · 105m3h + 140)(V − ENa)

Cm

− (1200e
−V−90

50 + 15e
V+90

60 (V − EK) + 1200n4(V − EK) + 75(V − EAn)

Cm
dm
dt

=
100(−V − 48)

exp((−V − 48)/15)− 1
(1− m)− 120(V + 8)

exp((V + 8)/5)− 1
m

dh
dt

= 170 exp(
−V − 90

20
)(1− h)− 1000

1 + exp((−V − 42)/10)
h

dn
dt

=
0.1(−V − 50)

exp((−V − 50)/10)− 1
(1− n)− exp(

−V − 90
80

)n
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Simulation of Noble model [Noble, D. 1962 Journal of Physiology]

• Successfully predicted several (unknown) phenomena
• Many extensions, models with ≈ 100 states or PDEs [D. Noble, 2012]

• One extension: calcium ion channels
• Tough optimization problems [Lebiedz & Sager, Physical Review Letters, 2005]

S. Sager (OVGU): MODEST 31



Phenomenological approach

• Important & difficult to distinguish between fibrillation and flutter
• Exiting approaches have shortcomings, not real-time feasible

• Idea: let us look at simpler phenomenological models
• Well known in medicine: different kinds of AV blocks

Type Mobitz I

Type Mobitz II (Wenckebach)
Linear prolongation of intervals
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Multilevel approach
• Idea: consider sequential filters of this simple type!

• 1912: Detection of ventricular arrhythmia for atrial flutter
• 1950: Implication of two block levels
• 1975: first EPU indicating localisation of block (= AV node!)
• 1976: Called “Multilevel AV-Block” [Kosowsky et al. 1976 Circulation]

• 1982: last high-impact paper on this topic
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Simulation of Mobitz block

Input : nα incoming time points αi, transit data τcon

Output: nβ time points βj after Mobitz–type block
begin

j := 1, r := 0;
for i = 1 . . . nα do

/* Signal can be processed */
if αi + τcon ≥ r then

βj = αi + τcon;
r = βj + τref;
j = j + 1;

nβ = j− 1;

S. Sager (OVGU): MODEST 34



Basic idea of our approach

• Published in [Scholz, E.P., Kehrle, F., Vossel, S., Hess, A., Zitron, E., Katus, H.A., Sager, S., Discriminating atrial flutter

from atrial fibrillation using a multilevel model of atrioventricular conduction, Heart Rhythm, 2014, 11(5), 877–884]

• Regard the inputs to simulation as optimization variables
• Regular signal ∆αi = ∆α in atrium
• Number nlvl and type πj of levels
• Transit data τ j

con, τ
j
inc and refrac time τ j

ref for all levels

• Minimize deviation of forward simulation from ventricular data

• Verify / falsify hypothesis “atrial flutter”:
• Objective small⇒ indication for atrial flutter
• Objective high ⇒ indication for atrial fibrillation
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Discrimination Examples [Scholz et al., Heart Rhythm, 2014]
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Discrimination Results [Scholz et al., Heart Rhythm, 2014]

• Based on ECG data of ≈ 100 patients in Heidelberg
• Comparison to intracardiac measurements, verified by two experts
• Sensitivity 79%, specificity 100%. RR statistics only 58% / 24%!
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Mathematical algorithms in clinical practice

• Patent in 2013
• GmbH founded in Heidelberg 2014
• Dissemination: App is 1 possibility
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K. RINKE · R. BARTSCH · R. FINDEISEN · T. FISCHER · K. RINKE · E. SCHALK · S. SAGER

Mathematical modelling and simulation

of Acute Myeloid Leukemia

Mathematical Algorithmic Optimization Group
Faculty of Mathematics
Otto-von-Guericke University Magdeburg



Poster session yesterday
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General remarks: chemotherapy planning
Obviously cancer growth is a complex dynamic process:

• Dynamic
• Nonlinear
• Delays
• High-dimensional
• Conflicting objectives
• Hard constraints
• Interaction with angiogenesis, immune-system, cell survival, . . .

Intuition: optimal control should be able to help
giving decision support for oncologists!
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First steps [Engelhart, Lebiedz, Sager, Mathematical Biosciences 2011]

• Literature survey: how useful are models?
• Until today mathematical models far away from reality!

Idea:
• Maximize tumor size at the end with same amount of drugs?
• Allows comparison with minimization→ potential of timing!

Showed: very dependent on mathematical model, but worth the effort!
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Acute myeloid leukemia
Leukemia: abnormal increase of immature white blood cells called “blasts”
Myeloid: relates to granulocyte precursor (blood-forming) cells in bone marrow
Acute: characterized by rapid increase; bone marrow is unable to produce
healthy blood cells and an immediate treatment is required
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Neutropenia in AML
Neutrophils

• form an essential part of the innate
immune system

• can ingest other cells (e.g. invasive
bacteria)

During AML Therapy:
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Schematic Mathematical Model [based on Quartino2012, Pefani2013]
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Modeling neutropenia during chemotherapy

ẋ0 = −k10⋅x0 − k12⋅x0 + k21⋅x1 + Chemotherapy

ẋ1 = k12⋅x0 − k21⋅x1

E =
Emax⋅x0

hill

EC50
hill

+x0
hill

ẋ2 = k NN⋅x2 ( (1 − E) (BNN / x4)
γNN−1)

ẋ3 = kNN ( x2−x3)

ẋ4 = kNN⋅x3 − keNN⋅x4

ẋ5 = k N⋅x5 ( (1 − E) (BN / xn+1)
γN−1)

ẋ6 = k N (x5 − x6)

⋮
ẋn = k N (xn−1 − xn)

˙xn+1 = k N⋅xn − keN⋅xn+1

Parameter Description
k10 Elemination rate
k12 transition rate
k21 transition rate

Emax maximal effect of chemotherapy
hill hill factor

EC50 half saturation constant
k NN proliferation /transition rate
BNN basic value
γNN feedback value

keNN death rate of circulating cells
k N proliferation /transition rate
BN basic value
γN feedback value

keN death rate of circulating cells

Pharmacokinetic
model

Pharmacodynamic
model

Cell dynamic
model

Non-Neutrophils

Neutrophils

PK

PD
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Parameter estimation 
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γ

B

ke

Leucocytes

PD

PK

k

Sensitivity analysis

● Monte Carlo (100 realisations per parameter, CV 25%)

Cardinal events:

Neutropenia

Beginning
of

neutropenia

Timing and height of
Neutrophil minimum

Length of neutropenia
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Outline

1 Introduction to MODEST

2 Decoding complex cardiac arrhythmia

3 Optimal control for leukemia treatment

4 Possible other clinical applications

5 Training
Complex Problem Solving
Optimization Approach to CPS
Optimization-based Feedback
Results of a Web-based Feedback Study

6 Summary
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Source detection for extrasystoles

• Certain heart area needs ablation to avoid extrasystoles
• Common practice: measure time delay of wave at several points
• Search (based on experience and trial-and-error) source area

• Idea: can we minimize the number of measurements?
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Illustration: the heart chamber

• Cardiac tissue
• Rhythmic heart beat
• Cardiac Excitation
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Measurement data
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Optimal control of insulin pumps
• Automatic control already used in practice
• Do this adaptively / optimally?
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Modeling and simulation of Polycythaemia Vera

• neoplasm in which the bone marrow makes too many red blood cells
• only cure: “breathing a vein” (blood-letting)
• difficult scheduling of appointments!
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Analysis and Training of
Human Decision Making

Michael Engelhart, Joachim Funke, Sebastian Sager

Otto-von-Guericke Universität Magdeburg,
Uni Heidelberg

Bȩdlewo, June 10, 2015
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Questions

Optimization in practice . . .
• a key technology for 21st century, enabling progress&prosperity

• risks to increase the gap compared to human decision making

Question: can optimization also be used to train humans?

Questions to you:
• Who thinks to perform better (without algorithms) in finding a good

solution to a random optimization problem “within your area of
expertise” compared to an average citizen?

• Who thinks this has to do with having seen optimal solutions and
sensitivities of similar optimization problems?
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Complex Problem Solving

• Humans are asked to solve a given complex problem
• Interest of psychologists: correlation to emotion regulation etc.
• Gets more attention: included in future PISA evaluations

• Most problems nowadays computer-based test-scenarios
• Tailorshop: one of the most famous ones (fruitfly of CPS)
• Developped in the 1980s (Dörner et al.)

• Participant has to run shirt company
• Round-based scenario
• Aim: maximize overall capital of company
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The IWR Tailorshop [Engelhart, Funke, S., Journal of Computational Science, 2013]

distribution & marketing

manufacturing

human resources

goals

maximize
overall balance

employees

production
sites

shirts
in stock

shirt
quality

advertising

reputation

price
per shirt

demand

sales

distribution
sites

machine quality

resources quality

motivation of
employees

wages
success

maintenance

(shirts)
production

+

+

+

+

+

+
+

+

+

+

+

-

-

-

+ +

+

+

+

++

-

+

materi
als management

+

+-

-

-

Diamonds indicate influence of participant’s decisions.
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IWR Tailorshop web interface

• implementation with AJAX, PHP using a MySQL database
• adaptive interface for mobile devices
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Complex Problems: Complexity

Production

Distribution

Human
Resources

Resources

Marketing
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Complex Problems: Interdependence

Production

Distribution

Human
Resources

Resources

Marketing
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Complex Problems: Intransparency

Production

Distribution

Human
Resources

Resources

Marketing

?
? ??

? ? ?
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Complex Problems: Dynamics

Wages

k k+1 k+2
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Complex Problems: Dynamics

Wages

k k+1 k+2

Motivation
of Employees

Product
Quality
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Complex Problems: mixed-integer decisions

• Continuous decisions, e.g., wages
• Discrete decisions, e.g., open/close a distribution site
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Optimization and Complex Problem Solving

• First: use optimization to define interesting microworld
• Bounded solution, multiple local maxima, important / unimportant

decisions, . . .

• Second:
optimal solution as performance indicator!

• Simple test-scenarios (e.g. Tower of Hanoi):
optimal solution known

• Complex test-scenarios:
optimal solution unknown

• Third: can optimal solutions be used for training?
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Formulate abstract optimization problem

• Same mathematical model (equations) for all tasks
• Dynamic model with discrete time k = 0 . . .N
• Decisions uk = u(k) and states xk = x(k)

• Scenario specified by initial values x0 and parameters p

• First: use optimization to define interesting microworld:
→ determine initial values x0 and parameters p

• Second and Third: analysis and training
→ find decisions uk to maximize objective function
→ Compare participant’s performance to optimal solution
→ Provide feedback on better choice for learning
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IWR Tailorshop states

States Variable Unit

employees xEM person(s)
production sites xPS site(s)
distribution sites xDS site(s)
shirts in stock xSH shirt(s)
production xPR shirt(s)
sales xSA shirt(s)
demand xDE shirt(s)
reputation xRE —
shirts quality xSQ —
machine quality xMQ —
motivation of employees xMO —
capital xCA M.U.

M.U. means monetary units.

S. Sager (OVGU): MODEST 69



IWR Tailorshop controls

Controls Variable Unit

shirt price uSP M.U./shirt

advertising uAD M.U.
wages uWA M.U./person

maintenance uMA M.U.
resources quality uRQ —
recruit/dismiss employees udEM/uDEM person(s)
create/close production site udPS/uDPS site(s)
create/close distribution site udDS/uDDS site(s)

M.U. means monetary units.
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IWR Tailorshop example model equations

State equations: xk+1 = G(xk, xk+1, uk, p)

xEM
k+1 = xEM

k − udEM
k + uDEM

k

xDE
k+1 = pDE,0 · exp

(
−pDE,1 · uSP

k

)
· log

(
pDE,2 · uAD

k + 1
)
·
(
xRE

k + pDE,3)
xSA

k+1 = min

{
pSA,0 · xDS

k+1 · log

(
pSA,1 · xEM

k+1

xPS
k+1 + xDS

k+1 + pSA,2
+ 1

)
; xSH

k + xPR
k+1; pSA,3 · xDE

k+1

}
. . .
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Second and Third: Optimization problem

max
x,u

F(xN)

s.t. xk+1 = G(xk, uk, p), k = ns . . .N − 1,
0 ≤ H(xk, uk, p), k = ns . . .N − 1,
uk ∈ Ω, k = ns . . .N − 1,
xns = xp

ns
.

• Dynamic model with discrete time k = 0 . . .N
• Nonconvex mixed-integer nonlinear program

• Starting at month ns with same data xp
ns

as participant
• Need to solve N − 1 optimization problems per participant
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Optimal Solutions
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How Much Is Still Possible
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Second use of optimization: analysis

Have to work a little (N optimization problems) to get it. But:

• provides objective performance measure
• allows time– and decision–specific analysis of what went wrong

• Details in [S., Barth, Diedam, Engelhart, Funke, Optimization as an analysis tool for human complex problem solving, SIAM

Journal of Optimization, 2011]
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Third use: Optimization-based Feedback
F E E D B A C KO P T I M I Z A T I O N

4 Bar chart

1 Highlight variables
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3 Toggle values
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55
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fix decisions uk with constraints
Artificial constraints for uk yield
sensitivities

A Start optimization in xk+1
Identical to the start values, the
participant will have for next decisions uk+1

xk+1xk

uk uk+1uk-1
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Web-based feedback study

• study conducted Nov/Dec 2013
• IWR Tailorshop web interface
• participants recruited in lectures and social networks
• 100 complete datasets

• 4 rounds of 10 “months” each, different initial values
• 2 rounds (= 20 months) with feedback (goal: learning)
• 2 rounds (= 20 months) without (goal: performance)

• Feedback in 6 randomized groups:
control, highscore, highlight, arrows, value, chart F E E D B A C KO P T I M I Z A T I O N
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Study results: feedback groups
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Study results: use of potential
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Hypothesis Proved

(A) participants with opt.-based feedback perform better
overall

X

(B) participants with opt.-based feedback perform better in
feedback rounds

X

(C) participants with opt.-based feedback perform better in
performance rounds

X

(D) control group performs worst —

(E) control group performs worse than opt.-based groups
in performance rounds

X

(F) trend group performs best overall —

(G) trend group performs best in performance rounds —

(H) value group performs best in feedback rounds X
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Hypothesis Proved

(I) value group performs better in feedback rounds, worse
in performance rounds

(X)

(J) participants with high BFI-10 values perform
worse/better

—

(K) participants who play computer games regularly
perform better

X

(L) participants interested in economics perform better X

(M) participants who solve problems systematically
perform better

X

(N) control group needs more time than opt.-based
feedback groups

—

(O) well-performers know more about the model X
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Hypothesis Proved

(P) participants who know much about the model, perform
well

X

(Q) value group knows less, trend group knows most about
the model

—/X

(1) participants learn to control the model X

(2) learning function is approximately logarithmic —

(3) optimization-based feedback groups learn faster (X)

(4) value group does almost not learn in feedback rounds X

(5) trend group learns fastest X
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Hypothesis Proved

(6) participants who learn much, perform well ?

(7) participants who perform well, learned much ?

(8) participants with high model knowledge learned more X

(9) initial performance is not important for final
performance

X

(10) chart group suffered from feedback (X)
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IWR Tailorshop: global solutions?

• Nonconvex mixed-integer nonlinear program
• Need global solutions! Can we use Couenne or Baron?

• But: for N = 1: 0.9 sec,
for N = 2: 12 sec,
for N = 3: � 10 min . . .

• Interesting effects (investment paying off) for N ≥ 5.

• Developed tailored decomposition approach for tight bounds (fast)
• [Engelhart, Funke, S., A Decomposition Approach for a New Test-Scenario in Complex Problem Solving, Journal of Computational

Science, 2013]
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Summary: optimization-based training
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uk uk+1uk-1

• Optimization 1) to design microworld 2) to analyze 3) to train
• Online study with 100 participants:

• Participants with optimization feedback in training rounds
perform better and have more model knowledge!

• But depends on type of feedback! General effect? → future work!

• Goal: use same approach for analysis and training of medical
decision making
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Summary

• Systematic & synergetic modeling and optimization approach
• Three uses: get good microworld, analysis, and training

• Challenging MINLPs solved by tailored decomposition
• Web-based study with 100 complete datasets:

optimization-based feedback can make a significant difference

• Details can be found in:
• [Engelhart, Funke, S., A Decomposition Approach for a New Test-Scenario in Complex Problem Solving, Journal of Computational

Science, 2013]

• [S., Barth, Diedam, Engelhart, Funke, Optimization as an analysis tool for human complex problem solving, SIAM Journal of

Optimization, 2011]

• [Engelhart, PhD thesis, University of Heidelberg, 2015]
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Outline

1 Introduction to MODEST

2 Decoding complex cardiac arrhythmia

3 Optimal control for leukemia treatment

4 Possible other clinical applications

5 Training
Complex Problem Solving
Optimization Approach to CPS
Optimization-based Feedback
Results of a Web-based Feedback Study

6 Summary
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Summary

• Interested in dynamic processes
• Approach:

• Find mathematical model (variables, equations, constraints)
• Calibrate parameters to fit measurements (patient-specific)
• Optimize over degrees of freedom
• Interact with medical doctor
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Issues in mixed-integer optimal control

Mixed-integer optimal control

Cognitive structures and processes

DAE Constraints
PDE Constraints

Hante&Sager, 2013
Gerdts&Sager, 2012

Real-time optimization

Global Optimization

Uncertainty
Decomposition

Experimental Design

MINLPs
Multi-objective

Combinatorial Constraints

Vanishing Constraints

Sager, 2013

Belotti, Kirches et al., 2013Logist et al., 2010

Jung, Kirches, Sager, 2013

Kirches et al., 2010

Sager, Claeys, Messine, 2014 

Huschto et al., 2011

Engelhart et al., 2013

Jung, Kirches, Sager, 2011

based on Outer Convexification
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IWR Tailorshop objective function

xCA
k+1 = pCA,0 ·

(
xCA

k +
(
xSA

k+1 · uSP
k

)
−
(
xEM

k+1 · uWA
k

)
− uAD

k −
(
xSH

k+1 · pCA,6)
−
(

xPR
k+1 · u

RQ
k · pCA,3

)
− uMA

k −
(
xPS

k · pCA,4
)
−
(
xDS

k · pCA,5
)

+
(
udPS

k · pCA,1)+
(
udDS

k · pCA,2)− (uDPS · pCA,7)− (uDDS · pCA,8))

Objective function:

F(xN) = xCA
N
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IWR Tailorshop objective function

x̃CA
k+1 = pCA,0 ·

(
xCA

k +
(
xSA

k+1 · uSP
k

)
−
(
xEM

k+1 · uWA
k

)
− uAD

k −
(
xSH

k+1 · pCA,6)
+ f1

(
xPR

k+1, u
SQ
k

)
+ f2

(
xPS

k , x
DS
k , xPR

k+1, x
EM
k+1

)
+
(
udPS

k · pCA,1)+
(
udDS

k · pCA,2)− (uDPS · pCA,7)− (uDDS · pCA,8))

Objective function:

F̃(xN) = x̃CA
N

S. Sager (OVGU): MODEST 91



The IWR Tailorshop: reducing the model
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Decomposition approach

• Idea: split problem up to get (at least) good upper bound
• Comparable to Lagrangian Relaxation approaches

• One master problem, several decoupled problems
• Coupled via the newly introduced cost functions f1 and f2 for the

decoupled problems
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Decomposition approach

original problem

max      F(xN)
s.t. xk+1 = G(xk,xk+1,uk,p) 

0 ≤ H(xk,xk+1,uk,p)
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Decomposition approach

master problem

max      F(xN)
s.t. xk+1 = G(xk,xk+1,uk,p) 

0 ≤ H(xk,xk+1,uk,p)~
~

~

min c1(·)
s.t. ... 

decoupled
problems

min c2(·)
s.t. ...

cost
function f1(·)

cost
function f2(·)

input
variables

input
variables
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Decomposition approach

max      F(xN)
s.t. xk+1 = G(xk,xk+1,uk,p) 

0 ≤ H(xk,xk+1,uk,p)~
~

~

min c1(·)
s.t. ... 

min c2(·)
s.t. ...

original problem

max      F(xN)
s.t. xk+1 = G(xk,xk+1,uk,p) 

0 ≤ H(xk,xk+1,uk,p)
≤

decomposition
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Original problem vs. decomposition

nx Original∗ Decomposition∗ Gap in %

1 189750.1 198795.0 4.5 %
2 195925.0 208899.3 6.2 %
3 202285.2 219306.8 7.8 %
4 208836.2 230026.5 9.2 %
5 215583.8 241067.7 10.6 %
6 222533.7 252440.2 11.8 %
7 229692.2 264153.9 13.0 %
8 237065.4 276219.0 14.2 %
9 244659.8 288646.0 15.2 %

10 252482.0 301445.9 16.2 %

∗ Using Bonmin (local solver) for original, Couenne (global solver) for decomposition.

Computation times similar (�1 min).
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