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Cancer Therapies

Cancer is a complex collection of diseases involving unregulated
cell growth. Common treatments include:

» Surgery

» Radiation therapy

» Chemotherapy

» Immunotherapy

> Targeted Therapy
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Milestones in Oncolytic Virotherapy
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Clinically tested Oncolytic Viruses

» adenovirus

> reovirus

> measles

> herpes simplex (HSV)

» Newcastle disease virus
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Viruses as Antitumor Weapons

% = rx(l—X;y)—dx—ﬂxy

d

d% = ﬁxy+5y<1—)(;y>—ay—pyz
d

d—i = cyz— bz

Wodarz, 2001

» x represents the uninfected tumor cells .
> vy represents the infected tumor cells by virus.

> z represents the CTL cells



Oncolytic Viral Model

(1)

% = ﬁxv+sy<1—)(;y>—ay—pyz ()
% = oyz— ¢z

% = Nay —¢v

> x represents the Uninfected Tumor cells .
> vy represents the Infected Tumor cells by virus.
» z represents the CD8 T cells

> v represents the Viral Load



Table of parameters

Variable/Parameter

Description

Uninfected tumor cells

Infected tumor cells

CTL cells

Free virus population

Uninfected tumor cell growth rate

Uninfected tumor cell death rate

Viral infectious rate

Infected tumor cell growth rate

Lysing rate*

Tumor carrying capacity

Death from CTL cells

CTL response rate

CTL death rate

Burst size of virions

mlzlelale|x|[e|v|ws| < |N]<]|x

viral decay rate

*rate of cytotoxic cell

death and viral replication




Equilibrium

Eo(0,0,0,0) Complete elimination of tumor .
El(M,0,0,0) Failure of viral therapy .

E» (0, K(SS_O‘),O, NKS(E‘g(;O‘)) Complete infection of tumor cells.
E3(0,%,W,%) Complete viral prevalence in the

tumor cell population in the pre-
sence of virus specific CTL respon-
se.

Ea(x3,y2,0,v;) Coexistence of uninfected and in-
fected tumor cells with suppressed
immune system.

Es(xz,ys, 25, Vi) Coexistence of uninfected and in-
fected tumor cells with presence of
CTL response.




Viral infection threshold

Theorem
Let r > u,s < a,. Then the model has boundary equilibrium. The
Viral Free Equilibria (VFE) ,E; = (XU=) 0,0,0), is LA.S if
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Changes in VFE
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Complete Viral Prevalence

Theorem
Let r < u,s > «,. The model has complete viral prevalence at

E, = (0’ K(s—a) .0, NKa(s—a)).

s(€)

E, is L.A.S whenever 0 < K(fs -

[
o< R

When ¢ > K‘:%a the immune response rate is large enough to
respond to the infected tumor cell population



CTL response
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Complete Viral Prevalence in the Presence of Immune
Response

Theorem

Lets>a,r<u,,o> ﬁ The model has complete viral
prevalence in the presence of CTL response at

Ez = (0, %, W, %) E3 is an unstable saddle point

whenever o K[(§)(r — )] — r¢(&) — BKNag < 0.

o BNKag+ro(€)
KO <0




Coexistence of Uninfected and Infected Populations in
Presence of Immune Response

Theorem

Lets>a,r>p,,0> K(f a): The equilibria of the coexistence of
uninfected and infection cells in the presence of CTL cells is
Es = (x&, y&, z2, v&). The model has an unstable point whenever

oBNKag+ro(§)
KO Y



CTL response
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Coexistence of Uninfected and Infected Populations
without Immune Response

Theorem
Lets < a,r>pu,,3> B1,0> %ﬁlﬁg@ The equilibria of the

coexistence of uninfected and infection cells in the absence of CTL
cells is E4 = (x5, y4,0,v;). The model has an unstable point at E4
whenever o < K(¢S
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Bifurcation at E,4
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Immune-Viral Interactions

Immunosuppression Immune Response
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» What are the viral-immune dynamics for oncolytic viruses?

» How much time delay is needed from the immune response in
order to allow for infection?

> Is the immune system infected by virus?



Future Work

» Add immune response to cancer population

» Extend model to include a Hill function for immune response
term

» Incorporate a delayed immune response on cancer-viral
interactions

» Incorporate data for partial /full model
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Thank you!

Dziekuje!



