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Milestones in Oncolytic Virotherapy
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Viruses as Antitumor Weapons

dx

dt
= rx

(
1− x + y

K

)
− dx − β xy (1)

dy

dt
= β xy + sy

(
1− x + y

K

)
− ay − pyz

dz

dt
= cyz − bz

Wodarz, 2001

I x represents the uninfected tumor cells .
I y represents the infected tumor cells by virus.
I z represents the CTL cells



Oncolytic Viral Model

dx

dt
= rx

(
1− x + y

K

)
− µx − β xv

dy

dt
= β xv + sy

(
1− x + y

K

)
− αy − ρyz (2)

dz

dt
= σyz − φz

dv

dt
= Nαy − ξv

I x represents the Uninfected Tumor cells .
I y represents the Infected Tumor cells by virus.
I z represents the CD8 T cells
I v represents the Viral Load



Table of parameters

Variable/Parameter Description
x Uninfected tumor cells
y Infected tumor cells
z CTL cells
v Free virus population
r Uninfected tumor cell growth rate
µ Uninfected tumor cell death rate
β Viral infectious rate
s Infected tumor cell growth rate
α Lysing rate*
K Tumor carrying capacity
ρ Death from CTL cells
σ CTL response rate
φ CTL death rate
N Burst size of virions
ξ viral decay rate

*rate of cytotoxic cell death and viral replication



Equilibrium

E0(0, 0, 0, 0) Complete elimination of tumor .

E1(
K(r−µ)
r , 0, 0, 0) Failure of viral therapy .

E2(0,
K(s−α)
s , 0, NKα(s−α)s(ξκ) ) Complete infection of tumor cells.

E3(0, bc ,
σK(s−α)−sφ
σρK , φNασ(ξ) ) Complete viral prevalence in the

tumor cell population in the pre-
sence of virus specific CTL respon-
se.

E4(x∗4, y
∗
4, 0, v

∗
4) Coexistence of uninfected and in-

fected tumor cells with suppressed
immune system.

E5(x∗5, y
∗
5, z
∗
5, v
∗
5) Coexistence of uninfected and in-

fected tumor cells with presence of
CTL response.



Viral infection threshold

Theorem
Let r > µ, s < α,. Then the model has boundary equilibrium. The
Viral Free Equilibria (VFE) ,E1 = (K(r−µ)

r , 0, 0, 0), is L.A.S if

α− sµ(ξ)
r(ξ)−βKN(r−µ) > 0 whenever β < r(ξ)

NK(r−µ) .

The Virus Free Equilibrium(VFE)

α > sµ(ξ)
r(ξ)−βKN(r−µ) when β < r(ξ)

KN(r−µ) .

R0 =
βNαK(r−µ)
(ξ−κ)(αr−µs) < 1 when β < r(ξ)

NK(r−µ) .

Let V0 =
sµ(ξ)

r(ξ)−βKN(r−µ) & βc = r(ξ)
KN(r−µ)
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Changes in VFE
α > V0, β < βc β = βc
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β > βc
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Complete Viral Prevalence

Theorem
Let r < µ, s > α, . The model has complete viral prevalence at

E2 =
(

0, K(s−α)
s , 0, NKα(s−α)

s(ξ)

)
.

E2 is L.A.S whenever σ <
φs

K(s−α) .

σ < φs
K(s−α)

When σ > φs
K(s−α) , the immune response rate is large enough to

respond to the infected tumor cell population



CTL response
σ < φs

K(s−α) σ > φs
K(s−α)
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Complete Viral Prevalence in the Presence of Immune
Response

Theorem
Let s > α, r < µ, , σ > φs

K(s−α) . The model has complete viral
prevalence in the presence of CTL response at
E3 = (0, φσ ,

σK(s−α)−sφ
σρK , φNασ(ξ) ). E3 is an unstable saddle point

whenever σK [(ξ)(r − µ)]− rφ(ξ)− βKNαφ < 0.

σβNKαφ+rφ(ξ)
K(ξ)(r−µ) < 0



Coexistence of Uninfected and Infected Populations in
Presence of Immune Response

Theorem
Let s > α, r > µ, , σ > φs

K(s−α) . The equilibria of the coexistence of
uninfected and infection cells in the presence of CTL cells is
E5 = (x∗5 , y

∗
5 , z
∗
5 , v
∗
5 ).The model has an unstable point whenever

σβNKαφ+rφ(ξ)
K(ξ)(r−µ) > 0.



CTL response
σβNKαφ+rφ(ξ)

K(ξ)(r−µ) < 0 σβNKαφ+rφ(ξ)
K(ξ)(r−µ) > 0
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Coexistence of Uninfected and Infected Populations
without Immune Response

Theorem
Let s < α, r > µ, , β > β1, σ >

βNKαb+rb(ξ)
K(ξ)(r−µ) . The equilibria of the

coexistence of uninfected and infection cells in the absence of CTL
cells is E4 = (x∗4 , y

∗
4 , 0, v

∗
4 ).The model has an unstable point at E4

whenever σ < φs
K(s−α) .
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Bifurcation at E4
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Immune-Viral Interactions

Immunosuppression Immune Response
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I What are the viral-immune dynamics for oncolytic viruses?

I How much time delay is needed from the immune response in
order to allow for infection?

I Is the immune system infected by virus?



Future Work

I Add immune response to cancer population
I Extend model to include a Hill function for immune response

term
I Incorporate a delayed immune response on cancer-viral

interactions
I Incorporate data for partial/full model
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Thank you!

Dziękuję!


