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Diffusion tensor imaging

Multiscale . . . .

models for @ Variant of diffusion-weighted
glioma . . .
invasion: magnetlc resonance imaging,

proliferation

and therapy DW—M RI

aspects

Consider a single voxel:

- @ Measures the spatial
Christina

St diffusion of water molecules
Motivation by MRI per volume element

(voxel) . : 7%,1
Ll B

This leads to a diffusion tensor

dxx(x) dxy(x) dxz(X)
D(X) = | dn(x) dy(x) dp(x)
dzx(x) dzy(x) dzz(X)

MRI-device (Philips Chieva 3.0 T)
http://upload.wikimedia.org/
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Data

Visualization of the main direction of diffusion by a vector pointing in
the direction of the tensor's leading eigenvalue
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models for
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o Makroskopisch
proliferation
and therapy
aspects
E Mesoskopisch
£
E
Motivation £ £ i i
S & Mikroskopisch
© E
¥ i
£
i
i
g ’ TR
4‘; y ke |
i NPT
i / B Sty
7 ﬁ *  (ODEs, SDEs, DDEs)
ns ps-3 min-h d-a
Zeit [T. S. Deisboeck et al. 2011] (modif.)

Goal: multiscale descriptions
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@ Receptor binding to unsoluble components @
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R+ (Ro—y)=RQ
Notation: y := RQ. k=
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and therapy Velocity V(J) E V — SSn_l
e Receptor state | yU) € Y (j =1, ..., N).

Christina
Surulescu

@ Newton's law (in the absence of reorientations)

Wi D
plroliferation dt ! dt
Vvia go-or-grow
@ ODE for receptor dynamics
dyt) . .
= G(yY, Q(t,x1))

dt
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and therapy . . . . .
aspects @ Goal: derive a kinetic equation for the cell density

Christina p(l‘.‘7 X, V, y)
Surulescu i A
@ In the absence of reorientations:

A micro-meso 8p

setting with — + V- vXp + vy ' (G(y7 Q)p) = 0
proliferation at SN—— S—

via go-or-grow Transport with velocity v From receptor dynamics

@ Changes in orientation (and speed) have to be
incorporated in the right-hand side.
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Q(t,x): volume fraction of tissue fibres.
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velocity v e V C IR", and internal state y € Y C [0, Rp].
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Q(t,x): volume fraction of tissue fibres.

y=kT(Ro—y)Q—ky.
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e Non-moving (proliferating) cancer cells:

Or = a(x) /\/ pdv — br + g(N)r — ¢(N)r.
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A micro-meso
rolfeation LNp:=—-Ay)p+ )\(y)@ Jy p(V))dv"  (turning operator)
o Subcellular (receptor) dynamics:

(1) = 6((1), Q),

e Total cell density (macroscopic):

// (t,x,v,y)dy dv + /(t,xm)dy

via go-or-grow
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A micro-meso
setting with
proliferation
via go-or-grow

Receptor dynamics in a static field

Steady state: y*

_ _k'"QRo
T kTQ+k
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Receptor dynamics in a static field

Multiscale . * kt QRO

e Steady state: y* = Ok

glioma . . .
e Introduce a new internal variable z := y* — y measuring
proliferation . R
and therapy deviations from the steady state.

aspects

Christina Consider the path of a single cell starting in xg and moving

Surulescu

with velocity v through a time-invariant density field Q(x).
Turning rate: A\(z) = A\g — A1z > 0, with adequate \g, A1 > 0.

A micro-meso
setting with

proliferation Write the transport equations w.r.t. z and consider the
MEG A moments w.r.t. z and v. Wanted:

M(t,x) := // p(t,x,v, z)dzdv
VxZ
w(t, X, v) ::/r(t,x,v,z)dz
z

to recover the macroscopic cell density N(t,x).
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models for

glioma system is close to steady-state. Scaling: t = £%t, X = ex.

invasion:

el el Assumption: the time scale on which birth and death events
an erapy

aspects occur is much slower than the (biased) random walk process.

Christina

Surulescu g(N) — 82g\-(l,\\l)
UN) — 20(NV).

A micro-meso

setting with
proliferation

via go-or-grow
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Parabolic scaling

Assume the internal dynamics equilibrates rapidly, s.t. the
system is close to steady-state. Scaling: t = £%t, X = ex.
Assumption: the time scale on which birth and death events
occur is much slower than the (biased) random walk process.

g(N) — g (R
UN) — 20(NV).

Then
1 b
5 (350" (o w2t )
(o PP (Q) sy 5P T Mo

_ a(jg)ibg(No)No — Nol(No),
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Parabolic scaling

Assume the internal dynamics equilibrates rapidly, s.t. the
system is close to steady-state. Scaling: t = £%t, X = ex.
Assumption: the time scale on which birth and death events
occur is much slower than the (biased) random walk process.

g(N) — g (R
UN) — 20(NV).

Then
OtNo =V - </\0 +1a(x)V ' (a(x)b+ bDT(x)N"))
Y (@) 5 DT - Y Q M)
— o) — ot(o),

with the tumor diffusion tensor D7 (x) = L [ wiq(¥) dv.
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models for
lioma . . .
oty With the logistic growth choice g(Np) = ¢z, ¢(Ng) = c¢No,
proliferation

and therapy Whel’e NO == ibbl\ﬂo, we get

aspects
Surutescu 9:No — cp(x)VV (D7 (x)No)—Arcp(x)V (u(x)No)
d 2
e = a+ngN07CZNO7
setting with
roliferation 1 — b H H
Eialgfo—or-grow with CD(X) = Dota)(a(x)+b) and the drift velocity

u(x) = y(x)f"(Q(x))Dr(x)VQ,

where v(x) = (ktQ + k= + X\o +a)~! and
+
F(Q00) — 25
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glioma

invasion:

oroliferation e Fractional anisotropy (FA), from data.

and therapy . . .
aspects Problem: assumes @ to be high where tissue is strongly

e aligned ~> also true in regions of isotropic (non-aligned)
* and densely packed tissue??
e o Estimated @ via free path length from diffusivity
e measured by DTI:

proliferation

via go-or-grow Characteristic (diffusion) |ength:

le = V Dt.,

with D a diffusion-related coefficient and t. the
characteristic (diffusion) time.
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Determine explicit forms of the coefficients

Choices of Q(x):
e Fractional anisotropy (FA), from data.

Problem: assumes @ to be high where tissue is strongly
aligned ~> also true in regions of isotropic (non-aligned)
and densely packed tissue??

o Estimated @ via free path length from diffusivity
measured by DTI:
Characteristic (diffusion) length:

le = V Dt.,

with D a diffusion-related coefficient and t. the
characteristic (diffusion) time.

Choice of D: tr(Dy).
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Choice of characteristic time t.: expected exit time of

Brownian motion from a ball with minimal radius surrounding
2

the voxel of length h, hence t. = %.

Christina

Surulescu

A micro-meso
setting with
proliferation
via go-or-grow
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aspects the Voxel Of Iength h, hence tC = 7

Christina
Surulescu

This estimate is valid for N'(0, t — s)-distributed increments,
PO and ours are N (0,0 - (t — s))-distributed, where ¢ is some
SeiinepiLh estimation of the diffusion speed. We choose o = /1, where /; is

proliferation

Ml the largest eigenvalue of Dyy.
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This estimate is valid for N'(0, t — s)-distributed increments,
PO and ours are N (0,0 - (t — s))-distributed, where ¢ is some
SeiinepiLh estimation of the diffusion speed. We choose o = /1, where /; is

proliferation

Ml the largest eigenvalue of Dyy.

. . . 2
Volume fraction of tissue fibers: /. = %}?W).
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invasion: Choice of characteristic time t.: expected exit time of

liferati . . . .. . .
P therapy Brownian motion from a ball with minimal radius surrounding
h2

aspects the Voxel Of Iength h, hence tC = 7

Christina
Surulescu

This estimate is valid for N'(0, t — s)-distributed increments,
PO and ours are N (0,0 - (t — s))-distributed, where ¢ is some
T o estimation of the diffusion speed. We choose o =/, where /; is

Ml the largest eigenvalue of Dyy.
. . . 2
Volume fraction of tissue fibers: /. = %}?W).
The free volume fraction of one voxel is I2/h3. So the occupied

. 3
volumeis @ =1 — =g
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Christina e orientation distribution function (ODF):

Surulescu

q(x,0) = ODF(0) := }OH(rG)r2 dr, with II(r6):
0

A micro-meso displacement probability of a spatial point in spherical

setting with

proliferation coordinates. It can be shown (Aganj et al 2010) that

via go-or-grow

1
A7 |Dyy (x)] (0t Dy (x)~16)

q(x,0) =

NIw
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an era . . n  nt
:s;};ctspy o Peanut: q(x,H) o \Snflltr]]])w(x)e DW(X)Q.
Christina e orientation distribution function (ODF):

Surulescu

q(x,0) = ODF(0) := }OH(rG)r2 dr, with II(r6):
0

A micro-meso displacement probability of a spatial point in spherical

setting with

proliferation coordinates. It can be shown (Aganj et al 2010) that

via go-or-grow

1
Ar[Dw (x)| (0" Dw (x)~16)

q(x,0) =

NIw

The tumor diffusion tensor can be explicitly computed for each
of these choices.
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0. 1. 2 0. 1 .2
i Y i e i b i b i
-0.27 237 -0.27 237 -0.27 237 027 237

A micro-meso
stting wit t=0 —100-10% +=1200-10% t=300-10%s
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Remark: KTAP by Bellomo assumes cell-cell interactions
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Workshop Theme

Cell motility, morphogenesis, and pattern formation are essential features of cell dynamics. The involved biochemical processes and
biomechanical properties range from the intracellular level over cel surface dynamics, cell-cell and cell-tissue interactions up to the scale of
cell population behaviour influencing organ formation and functioning,

Mathematical models handiing biological events taking place on one or several such scales can provide a powerful framework to understand
these phenomena, test experimentally suggested conjectures, and make predictions about the behaviour of the studied system. Current
modelling approaches are often continuous, involving systems of partial differential equations of various kinds (e.g, reaction-diffusion-
transport, taxis, kinetic transport, population balance), possibly coupled to ordinary, random, or stochastic differential equations.
Furthermore, the so-called agent-based approaches (e.g. cellular automata, Potts models, etc.) characterize the behaviour of individual cells
or intracellular particies in a discrete way, permitting rather detailed descriptions of motions, interactions etc. Yet other model types are
hybrids between discrete and continuous descriptions. Applications include, but are not restricted to embryogenesis, tumour growth and
invasion, wound healing, tissue bioengineering, biofiims, etc. The models lead to highly complex analytical and numerical problems, which
often cal for the development of new mathematical tools or for the enhancement of existing ones. At the same time recent mathematical
developments for example in nonlinear waves and coherent structures, in solid mechanics and in dynamical systems theory can help shed
light on generic mechanisms; as well as the biology providing challenges to the mathematical state of the art.

Therefore, the aim of this workshop is to bring together scientists working on these timely and challenging topics of mathematical biology,
analysis and numerics. It will provide both an international framework and motivation to further develop the modelling of the mentioned
biological phenomena and to strengthen the synergies between the involved branches of applied mathematics, but also between
mathematics and life sciences.

Deadline for applications: 27 September 2015
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