¹Diana White, ²Gerda de Vries, ¹Jonathan Martin, ³Adriana Dawes

¹Aix-Marseille, France, ²University of Alberta, Canada ³Ohio State University, USA

Microtubule patterning in the presence of motor proteins

Microtubule (MT) structure and dynamics

Typical MT structure

Typical MT dynamic properties

Microtubule organization in vivo

Anti-parallel bundle

Parallel bundle

Motor proteins and MTs

Motor proteins walk along MTs

Motor proteins aling MTs (produce force)

Microtubule organization in vitro

Experiments by Surrey and Nedelec 2001

Bull Math Biol DOI 10.1007/s11538-014-9991-1

ORIGINAL ARTICLE

(1)

Microtubule Patterning in the Presence of Stationary Motor Distributions

Diana White $\,\cdot\,$ Gerda de Vries $\,\cdot\,$ Adriana Dawes

(2) Microtubule Patterning in the Presence of Moving Motor Proteins D White, G de Vries, J Martin, and A Dawes Journal of Theoretical Biology, 2015

(3) Existence and Uniqueness for a Coupled PDE Model for Motor-Induced Microtubule Organization

T Hillen, D White, G de Vries, A Dawes Submitted to SIAP, 2015 Bull Math Biol DOI 10.1007/s11538-014-9991-1 Society for Mathematical Biology

ORIGINAL ARTICLE

(1) Microtubule Patterning in the Presence of Stationary Motor Distributions

Diana White $\,\cdot\,$ Gerda de Vries $\,\cdot\,$ Adriana Dawes

(2) Microtubule Patterning in the Presence of Moving Motor Proteins D White, G de Vries, J Martin, and A Dawes Journal of Theoretical Biology, 2015

(3) Existence and Uniqueness for a Coupled PDE Model for Motor-Induced Microtubule Organization

T Hillen, D White, G de Vries, A Dawes Submitted to SIAP, 2015 **Bound motors walk along MTs**

$$\frac{\partial m_b(x,t)}{\partial t} + v_b \cdot \nabla_x(m_b(x,t)) = k_{on}(\tilde{p})m_u(x,t) - k_{off}m_b(x,t)$$
Unbound motors diffuse freely motors switch between bound and unbound states
$$\frac{\partial m_u(x,t)}{\partial t} - D_u\Delta_x m_u(x,t) = -k_{on}(\tilde{p})m_u(x,t) + k_{off}m_b(x,t)$$

$$\frac{\partial p(x,t,\theta)}{\partial t} + S_{MT}\hat{\theta} \cdot \nabla_x p(x,t,\theta) = -\lambda(m_b)p(x,t,\theta) + \lambda(m_b)\int_{-\pi}^{\pi} k(\theta,\tilde{\theta},m_b)p(x,t,\theta)d\tilde{\theta}$$

MTs treadmill along a directed path

MTs reorganize in the presense of motor proteins

Simulation result for NCD (low motor density)

Simulation result for kinesin (low motor density)

Results with two opposing mitotic motors (kinesin-5 and NCD)

Conclusions and future work

- We can reproduce patterns found in *in vitro* experiments.
- We can produce anti-parallel bundles (like in the mitotic spindle!).
- We have developed a nice E and U result (T Hillen *et al*. Submitted to SIAP).
- Next, we include dynamic instability and look at action of chemotherapy drugs on MT organization (in particular, the antiparallel bundles).