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What is a semelparous species?

cereals and
grasses,

beet, carrot,
cabbage, onion,
lettuce

agave,

bamboo,

arachnids and
insects:
magicicada

an organism reproduces only
once in its lifetime,

usually dies afterwards,

we consider only species with
lifespan of fixed length.
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Age-structured models

Discrete-time model:
x(t, a) — number of individuals of age a at time t.
x(t) = [x(t, 1), . . . , x(t, n)] — vector of subpopulation sizes.

Nonlinear Leslie model: x(t + 1) = A(x) x(t)

Continues-time model:
u(t, a) — age distribution of population at time t.
Evolution of population described by McKendricka-type system

Evolution eqaution:


∂u(t,a)
∂t + ∂u(t,a)

∂a = −µu(t, a)

u(t, 0) = β(u)

u(0, a) = u0(a)
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Discrete-time model of n-years semelparous species

only speciments at age n can proliferate
x(t, a) — number of individuals of age a at time t

Equations:{
x(t + 1, a + 1) =[1− µ(a,N(t))]x(t, a),

x(t + 1, 1) =b(N(t))x(t, n),

N(t) =
∑n
a=1 x(t, a) — size of population at t

µ — mortality rate,

b — birth rate (average number of offspring)
b is a positive decreasing function of N :
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Stationary states

Trajectories are bounded

— there exists a compact
positively invariant set

There exist exactly two stationary states:
x = 0

x∗1 = N0∑n
i=1
r(i)

x∗2 =r(2)x∗1 ,
...

x∗n =r(n)x∗1
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Stationary states

Trajectories are bounded

— there exists a compact
positively invariant set

There exist exactly two stationary states:

x = 0 — a trivial one



x∗1 = N0∑n
i=1
r(i)

x∗2 =r(2)x∗1 ,
...

x∗n =r(n)x∗1

where r(1)=1 and r(i)=q(1)···q(i−1),
and N0 ∈ (0,Nmax) such that

r(n)b(N0) = 1
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Stationary states

Trajectories are bounded

— there exists a compact
positively invariant set

There exist exactly two stationary states:

x = 0 — always repulsive



x∗1 = N0∑n
i=1
r(i)

x∗2 =r(2)x∗1 ,
...

x∗n =r(n)x∗1

— unstable if n is even
(and most often for odd n)
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Two-year species: x1, x2 — age 1 and 2. x∗ — steady state.
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The competition between different age-classes
results in the extinction

of all but one age-classes.

age-class - speciments in the same age

Asymptoticaly, the behaviour of the population resembles
the behaviour of a population consisted of one-year class only,
described by a one-dimentional dynamical system g :

g(x) = b(r(n)x) r(n) x

 x10...
0

 after n steps−−−−−−→

 g(x1)0...
0



stable point of g becomes a stable n-periodic
orbit of the model,

(stable) k-periodic orbit of transfomation g
becomes a (stable) kn-periodic orbit of the model.
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periodic g with period 2 chaotic g
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Transition to the continuous-time model
x(t, a) – vector of numbers step: 1 n– max. age
↓ ↓ ↓

u(t, a) – population density step: ∆t � 1 m = n∆t

x(t + 1, a + 1) = [1− µ(a,N(t))]x(t, a), a = 2, ..., n

u(t + ∆t, a + ∆t)− u(t, a)=−∆tµ(a)u(t, a) + o(∆t)

↓ ↓
∂u
∂t

+
∂u
∂a

=− µ(a)u

x(t + 1, 1) = b(N(t))x(t, n),

u(t + ∆t,∆t) =b(N(t))u(t, n∆t),

↓ ↓
u(t, 0) =β(N(t))u(t,m)
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Continuous-time model

We consider the McKendrick-type equation of the form:

[
u(t, a) — distribution of the
population in time and age

]

(MK)


∂u(t,a)
∂t + ∂u(t,a)

∂a = −µ(a) u(t, a),

u(t, 0) = β(N(t))u(t,m),

where:

N(t) =
∫ a
0 u(t, a) da, — total mass of population

m — maximal age of the specimen and age of
reproduction

µ — mortality rate β — birth rate

Assumptions:


µ, β — continuous and positive functions
β — decreasing
β(0)φ(m) > 1 (persistence)
β(∞)φ(m) < 1 (boundedness)
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1 — maximal age of the specimen and age of
reproduction

µ — mortality rate β — birth rate

Assumptions:


µ, β — continuous and positive functions
β — decreasing
β(0)φ( 1 ) > 1 (persistence)
β(∞)φ( 1 ) < 1 (boundedness)

Radosław Wieczorek Continuous-time model of semelparous species. 9



The renewal equation
[
the standard method of investi-
gating McKendrick equation

]

solving along the characteristics:

(?) u(t, a) = φ(a)u(t − a, 0),

[
where φ(a) = e−

∫ a
0
µ(s)ds

is a survivorship function

]
plus

u(t, 0) = β(N(t))u(t, 1), [boundary condition]

give the so-called renewal equation:

(??) u(t, 0) = β

(∫ 1
0
φ(a)u(t − a, 0) da

)
φ(1)u(t − 1, 0).

Having the solution of (??) we can use (?) to reconstruct the
solution of the McKendrick equation (MK).
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The renewal equation

u(t, 0) = φ(1)β

(∫ 1
0
φ(a)u(t − a, 0) da

)
u(t − 1, 0)

Denote x(t) = u(t, 0) and f (y) = φ(1)β(y).
So, we consider the equation of the form
(RE) x(t) = f

(∫ 1
0
φ(a)x(t − a) da

)
x(t − 1), t  0,

x(t) = x0(t), t ∈ [−1, 0), [initial condition]

with assumptions:

φ — continuously differentiable, positive and
strictly decreasing with φ(0) = 1.

f — decreasing, f (0) > 1 and f (1) = 1.

Radosław Wieczorek Continuous-time model of semelparous species. 11



Radosław Wieczorek Continuous-time model of semelparous species. 12



Stationary solutions

of the equation:

(RE) x(t) = f

(∫ 1
0
φ(a)x(t − a) da

)
x(t − 1), t  0,

a trivial stationary solution x(t) = 0

a positive one: x∗ = 1/φ, where φ =
∫ 1
0 φ(a) da.

These solutions give the only two stationary solutions of (MK),
namely:

u(t, a) = 0 [repulsive]

and
u(t, a) = φ(a)/φ. [not stable]
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Periodic solutions with period = lifespan

For x to be an 1-periodic solution of (RE), we need

x(t) = f

(∫ 1
0
φ(a)x(t − a) da

)
x(t),

which is satisfied if for each t  0 we have

either
∫ 1
0
φ(a)x(t − a) da = 1 or x(t) = 0

Theorem

The only two 1-periodic non-negative classical (L1loc)
solutions of the renewal equation (RE) are the stationary ones,
namely, 0 and x∗ (given before).

Radosław Wieczorek Continuous-time model of semelparous species. 14



Why to investigate measure-valued solutions?
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Measure solutions
A measure x on [−1,∞) is called a measure solution of the
renewal equation if

(?) x(t) = f
(
φ ∗ x (t)

)
x(t − 1), t  0,

where
φ ∗ x (t) =

∫
[t−1,t)

φ(t − a)x(da), t  0.

By (?) we mean

x
(

[0, t)
)

=
∫

[−1,t−1)

f
(
φ ∗ x (s + 1)

)
x(ds), for all t  0.

Theorem
The only atomless measures that are 1-periodic solutions of (?)

are the stationary ones (0 and x∗).
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Purely atomic solutions with period = lifespan

Take some (finite or infinite) sequence tn ∈ [0, 1). There exists
a sequence of coefficients αn > 0 satisfying a system

∑
i

αiφ(btn−tie) = C0, for all n, where bse =

{
s, if s > 0,

s + 1, if s ¬ 0.

such that a 1-periodic measure defined on [0, 1) by

x
∣∣∣
[0,1)

=
∑
n
αnδtn satisfies (RE).

[
δt — Dirac
measure at t

]

One age-class solution — single Dirac delta
∞∑
k=1

1
φ(1)

δk is a 1-periodic solution of (RE)

u(t) = φ(t−btc)
φ(1) δt−btc is a 1-periodic solution of (MK)
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Convergence to delta
If the initial function is supported on a small interval,
then the solution of (MK) converges to
a periodic solution consisted of a travelling Dirac delta:

Theorem
There exists ρ > 0 (depending on f and φ) such that
if the initial function u(0, a) is coutinuous and supported on
the interval (α, 1) shorter than ρ then

u(t, a)
t→∞−−−→ ũt = α0φ(t − btc)δt−btc(s)

[
travelling
delta

]
where α0 is the uniquely defined by φ and f .

Precisely,∫ k+1
k x(s)ds → α0 and

∫ k+1
k+δ x(s)ds → 0 for any δ > 0

It’s equivalent to the weak/weak*/flat convergence of
measures: ut − ũt

w−→ 0, where ut(da) = u(t, a)da
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Convergence to delta
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Convergence to delta
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Convergence to delta?

Remark
The limit solution for a continues initial state:

α0φ(t − btc)δt−btc

differs from the travelling delta measure solution:

1
φ(1)φ(t − btc)δt−btc

The convergence depends on the initial condition:

Theorem
There exists 0 < ρ1 < 1− ρ such that if the gap
in the support of the initial function is shorter then ρ1
then the convergence to a traveling delta is impossible.
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