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What is a semelparous species?

@ an organism reproduces only
once in its lifetime,

@ usually dies afterwards,

Radostaw Wieczorek Age-structured models of semelparous species



What is a semelparous species?

@ an organism reproduces only
once in its lifetime,

@ usually dies afterwards,

@ we consider only species with
lifespan of fixed length.
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What is a semelparous species?

@ cereals and
grasses,
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What is a semelparous species?

@ cereals and
grasses,

@ beet, carrot,
cabbage, onion, _
lettuce .
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What is a semelparous species?

r

@ cereals and
grasses,

@ beet, carrot,
cabbage, onion,
lettuce

@ agave,
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What is a semelparous species?

@ cereals and
grasses,

@ beet, carrot,
cabbage, onion,
lettuce

@ agave,

@ bamboo,
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What is a semelparous species?

@ cereals and
grasses,

@ beet, carrot,
cabbage, onion,
lettuce

@ agave,

@ bamboo,

@ arachnids and

insects:
magicicada
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Age-structured models

Discrete-time model:

x(t,a) — number of individuals of age a at time t.
x(t) = [x(t,1),...,x(t,n)] — vector of subpopulation sizes.

Nonlinear Leslie model: x(t + 1) = A(x) x(t)

Continues-time model:
u(t, a) — age distribution of population at time t.
Evolution of population described by McKendricka-type system

a ou(t,a
ai ) 4 g; ) — —pu(t, a)

Evolution eqaution: ¢ u(t,0) = 5(u)
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Discrete-time model of n-years semelparous species

only speciments at age n can proliferate
x(t,a) — number of individuals of age a at time ¢

Equations:

{x(t Y 1a+1) =[1— p(a, N(t)]x(t, ),
x(t +1,1) =b(N(£))x(t, n),

e N(t) =X"_, x(t,a) — size of population at t
@ ;1 — mortality rate,

@ b — birth rate (average number of offspring)
b is a positive decreasing function of N:
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Stationary states

Trajectories are bounded

— there exists a compact
positively invariant set
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Stationary states

Trajectories are bounded

— there exists a compact
positively invariant set

There exist exactly two stationary states:

° x=0 — a trivial one
£« _ N
X =TT |
& —r(2)x* where r(1)=1 and r(i)=q(1)---q(-1),
° i Y and Ny € (0, Npayx) such that
(n)b(N) = 1
Xy =r(n)x{

4
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Stationary states

Trajectories are bounded

— there exists a compact °
positively invariant set

There exist exactly two stationary states:

e x=0 — always repulsive
* No
XK = a
Ly
* * - -
R =r(2)x;, — unstable if n is even

(and most often for odd n)

4
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X2

X1

Two-year species: x1, x, — age 1 and 2. x* — steady state.

v
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The competition between different age-classes
results in the extinction
of all but one age-classes.

age-class - speciments in the same age

Asymptoticaly, the behaviour of the population resembles
the behaviour of a population consisted of one-year class only,
described by a one-dimentional dynamical system g:

X1 g(x1)
0 arter n e

g(x) = b(r(n)x) r(n) x | e | 0
0 0

@ stable point of g becomes a stable n-periodic
orbit of the model,

o (stable) k-periodic orbit of transfomation g
becomes a (stable) kn-periodic orbit of the model.
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The competition between different age-classes
results in the extinction
of all but one age-classes.
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Transition to the continuous-time model

x(t,a) — vector of numbers  step: 1 n— max. age

! ! !
u(t,a) — population density  step: At < 1 m = nAt

x(t+1,a+1)=[1—p(a, N(t))]x(t,a), a=2,....n )

x(t +1,1) = b(N(£))x(t, n), |
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Transition to the continuous-time model

x(t,a) — vector of numbers  step: 1 n— max. age

! ! !
u(t,a) — population density  step: At < 1 m = nAt

x(t+1,a+1)=[1—p(a, N(t))]x(t,a), a=2,....,n )

u(t + At,a+ At) — u(t,a)= — Atp(a)u(t, a) + o(At)

l !

T
ot " 9a

x(t +1,1) = b(N(£))x(t, n),

u(t + At, At) =b(N(t))u(t, nAt),
! !
u(t,0) =B(N(t))u(t, m)




C . . del u(t, a) — distribution of the
ontinuous-time mode population in time and age

We consider the McKendrick-type equation of the form:

- oulta) o oua) — —p(a) u(t, a),
u(t,0) = B(N(t))u(t, m),

where:
e N(t)= 5 u(t,a)da, — total mass of population
@ m — maximal age of the specimen and age of
reproduction
@ 1 — mortality rate @ 3 — birth rate

@ 11, f — continuous and positive functions
@ 3 — decreasing

@ 3(0)¢(m) > 1 (persistence)
@ 3(c0)p(m) < 1 (boundedness) |
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C . . del u(t, a) — distribution of the
ontinuous-time mode population in time and age

We consider the McKendrick-type equation of the form:

wo [ = e )
u(t, O) = 5(N(t))u(t’ 1)’

where:
e N(t)= 5 u(t,a)da, — total mass of population
@ 1 — maximal age of the specimen and age of
reproduction
@ 1 — mortality rate @ 3 — birth rate

@ 11, f — continuous and positive functions
@ 3 — decreasing

@ 3(0)p( 1) > 1 (persistence)
@ 3(c0)p( 1) < 1 (boundedness) |

Radostaw Wieczorek Continuous-time model of semelparous species.

Assumptions:




the standard method of investi—}

The renewal equatlon [gating McKendrick equation

solving along the characteristics:

where ¢(a) — e~ foa wu(s)ds ]

is a survivorship function

(*) u(t,a) = ¢(a)u(t — a,0), [
plus
u(t,0) = B(N(t))u(t,1), [boundary condition]

give the so-called renewal equation:
1
(=) u(t,0) = ﬁ(/ o(a)u(t — a,0) da) o()u(t —1,0).
0

Having the solution of (**) we can use () to reconstruct the
solution of the McKendrick equation (vk).

v
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The renewal equation

u(t,0) = ¢(1)5</01 é(a)u(t — a,0) da> u(t —1,0)

Denote x(t) = u(t,0) and f(y) = ¢(1)5(y).
So, we consider the equation of the form

(rRe) | x(t) = f(/ol o(a)x(t — a) da)x(t —-1), t>0,
x(t) = xo(t), t € [-1,0), [initial condition]

with assumptions:

@ ¢ — continuously differentiable, positive and
strictly decreasing with ¢(0) = 1.
e f — decreasing, f(0) > 1 and f(1) = 1.

4
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Stationary solutions
of the equation:

R x(t) = f</01 é(a)x(t — a) da)x(t ~1), t>0,

@ a trivial stationary solution x(t) =0
@ a positive one: x* = 1/¢, where ¢ = [ ¢(a) da.

These solutions give the only two stationary solutions of (vk),
namely:
u(t,a) =0 [repulsive]
and

u(t,a) = gb(a)/g [not stable]

v
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Periodic solutions with period = lifespan
For x to be an 1-periodic solution of (re), we need
1
x(t) = f(/ é(a)x(t — a) da>x(t),
0
which is satisfied if for each t > 0 we have

either /01 o(a)x(t—a)da=1 or x(t)=0

Theorem

The only two 1-periodic non-negative classical (Li,.)

solutions of the renewal equation (RE) are the stationary ones,
namely, 0 and x* (given before).
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Why to investigate measure-valued solutions?

u(0,a)

K< I> ] [=]be] +]
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Measure solutions

A measure x on [—1,00) is called a measure solution of the
renewal equation if

) x(t) = f(pxx())x(t—1), t>0,

where
6% x () = / o(t — a)x(da), t>0.

[t—1,¢t)

By (x) we mean

x([O, t)) = / f((b * x (s + 1))x(ds), forall t > 0.

[-1,t—1)

Theorem
The only atomless measures that are 1-periodic solutions of ()
are the stationary ones (0 and x*).

4

Radostaw Wieczorek Continuous-time model of semelparous species.



Purely atomic solutions with period = lifespan

Take some (finite or infinite) sequence t, € [0,1). There exists
a sequence of coefficients «, > 0 satisfying a system

s, if s >0,

; = (o, for all h s| =
Zaqﬁ 0, forall n, where |s] {s+1,ifs<0.

such that a 1-periodic measure defined on [0, 1) by
_ . 6; — Dirac
X‘[O,l) = zn: apdy, satisfies (RE). [measure e

v

One age-class solution — single Dirac delta

> 1

> — is a 1-periodic solution of (rE)

ol )"

u(t) = 2 LtJ)(St lt| is a l-periodic solution of (k)

v
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Convergence to delta

If the initial function is supported on a small interval,
then the solution of (Mk) converges to
a periodic solution consisted of a travelling Dirac delta:

Theorem

There exists p > 0 (depending on f and ¢) such that

if the initial function u(0, a) is coutinuous and supported on
the interval («, 1) shorter than p then

u(t, @) === Gy = apd(t — |t])0e— 2/ (5) [”‘Zf/tgng}

where «y is the uniquely defined by ¢ and f.

Precisely,
1 x(s)ds — ag and [ x(s)ds — 0 for any § > 0
It's equivalent to the weak/weak* /flat convergence of

~ W
measures: u; — Uy — 0, where u,(da) = u(t, a)da
Radostaw Wieczorek Continuous-time model of semelparous species.



Convergence to delta

t=0.000
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Convergence to delta
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Convergence to delta?

Remark
The limit solution for a continues initial state:

agd(t — [t])de—)

differs from the travelling delta measure solution:

ﬁdt — [t])0e-1)

The convergence depends on the initial condition:

Theorem

There exists 0 < p; < 1 — p such that if the gap

in the support of the initial function is shorter then p,
then the convergence to a traveling delta is impossible.
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