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Basic population model

Logistic equation

v(t) – population density at time t ≥ 0
λ- birth rate
K –caring capacity
F - consumption rate (mortality )

vt (t) = λv(t)
(

1− v(t)
K

)
− Fv(t)

If λ > F there is the unique stable steady state

v̄ = K
(

1− F
λ

)
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Predator-prey model with (direct) prey taxis

Predator searching strategy is the superposition of random
dispersion and directed movement towards the gradient of prey
density
u–predator density
v–prey density

ut = du∆u − div(χu∇v) + f1(u , v), x ∈ Ω, t > 0
vt = ε∆v + λv(1− v

k )− f2(u v), x ∈ Ω, t > 0

introduced by Kareiva and Odell (1987)
studied by J. Lee, M. Lewis and T. Hillen (2009)
survey paper A. Jungel (2010)

Question: Could predator-prey interaction lead to pattern
formation and occurrence of prey aggregations?
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Two Models of indirect prey taxis (IPT)

Predator searching strategy is the superposition of random
dispersion and directed movement towards the gradient of
some chemical indicating the presence of prey :

Model IPT1: released by injured prey during capturing.

Model IPT2: released by prey itself ”smell of prey”.
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Model IPT1

u–predator density
v–prey density
w– chemical released by injured prey (chemoattractant)

Nondimesionalized version of IPT1 model:

ut = ∆u − div(χu∇w), x ∈ Ω, t > 0
wt = dw ∆w − w + αvF (u), x ∈ Ω, t > 0

vt = λv(1− v)− vF (u), x ∈ Ω, t > 0

with mortality of prey due to the activity of predator.
Effect of spacial grouping of predators:

F (u) =
Fmu
1 + u

proposed by C. Cosner et al. (1999),
no-flux boundary conditions and nonnegative initial data
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Model IPT2

w– chemical released by prey ”smell of prey”’(chemoattractant)

ut = ∆u − div(χu∇w), x ∈ Ω, t > 0
wt = dw ∆w − µw + αv , x ∈ Ω, t > 0
vt = λv(1− v)− vF (u), x ∈ Ω, t > 0
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Foraging of planktivorous fish on zooplankton

I Z.M Gliwicz, D.W. Predation-Mediated Coexistence of
Large- and Small-Bodied Daphnia at Different Food Levels.
American Naturalist (2008).

I Z.M Gliwicz, P. Maszczyk, J. Jablonski, D.W. Patch
exploitation by planktivorous fish and the concept of
aggregation as an antipredation defense in zooplankton.
Limnol. Oceanogr (2013).
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Existence of solutions

W 2,p
N (Ω) = {w ∈W 2,p

N (Ω) :
∂w
∂ν

(x) = 0 , x ∈ ∂Ω}

Theorem
Assume that initial functions are nonnegative and for p > n,
u0 , v0 ,∈W 1,p(Ω) and w0 ∈W 2,p

N (Ω). Then there exist a unique
solution (u ,w , v) to IPT model such that

u , v ∈ C([0 ,∞); W 1,p) and w ∈ C([0 ,∞); W 2,p
N ) .

Moreover, for any T > 0, u ,w ∈ C2,1
x ,t (Ω× (0 T )) and

u,w , v ≥ 0 on Ω× (0 T ).

Proof is based on Banach fixed point theorem applied for
integral formulation of the problem and theory of analytical
semigroups.
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Steady states and linearization

It follows from the non-flux boundary condition that

〈u(t)〉 :=
1
|Ω|

∫
Ω

u(x , t)dx = 〈u0〉 :=
M
|Ω|

, for t > 0.

If F (ū) < λ in each of the models there is only one constant
steady state with positive components:
for IPT1; P1

1 = (ū , w̄ , v̄) with

ū = 〈u0〉 , w̄ =
α

µ

(
1− F (ū)

λ

)
F (ū), v̄ = 1− F (ū)

λ
,

for IPT2; P2
1 = (ū , w̄ , v̄)

ū = 〈u0〉 , w̄ =
α

µ

(
1− F (ū)

λ

)
, v̄ = 1− F (ū)

λ
.
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Trivial steady state

There is also a trivial steady state P0 for both models:

ū = 〈u〉 , w̄ = v̄ = 0 .

which is a unique space homogeneous steady state provided
F (〈u0〉) ≥ λ.
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Linearization and the eigenvalue problem

Linearization at a homogeneous steady state (ū , w̄ , v̄) to
Model IPT1 leads to the following eigenvalue problem

∆ϕ− χū∆ψ = σϕ,

dw ∆ψ − µψ + αv̄F ′(ū)ϕ+ αF (ū)η = σψ,

−v̄F ′(ū)ϕ+ (F (ū)− λ)η = ση

where (ϕ ,ψ , η) ∈ X0 × X × Y and

X0 = {ϕ ∈W 2,p(Ω) :
∂ϕ

∂ν
= 0 ,

∫
Ω
ϕ(x)dx = 0} ,

X = {ϕ ∈W 2,p(Ω) :
∂ψ

∂ν
= 0} , Y = L2(Ω) .
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Spectrum

Let {λn}∞n=0 be the sequence of eigenvalues of operator −∆
with homogeneous Neumann boundary conditions defined on
X

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . .
Let us define matrix

An =

 −λn χūλn 0
αv̄ f1 −(dwλn + µ) −αf
v̄ f2 0 r


where f = F (ū), r = λ− f − 2v̄λ and f1 = f2 = F ′(ū) in Model
IPT1 and f1 = 0 , f2 = F ′(ū) in the case of Model IPT2.

Proposition
A complex number σ is an eigenvalue to the linearized system
if there exists n ≥ 1 such that σ is an eigenvalue of matrix An or
for n = 0, σ ∈ {−µ , r}. Moreover spectrum of the linear
operator consist only of eigenvalues.
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Stability criterion

Theorem
Steady state P1

1 in Model IPT1 is locally asymptotically stable if

χαūF ′(ū)

λ
< (1 + dw ) min

(
2µ

µ+ F (ū)
,1
)
.

Steady state P2
1 in Model IPT2 is locally asymptotically stable if

χαūF ′(ū)

λ
< (1 + dw )

2µ
F (ū)

.

There exists δ0 > 0 such that if σ ∈specAn then Reσ < −δ0 < 0.
Steady state P0 is unstable provided λ ≥ F (ū). There is K > 0
such that steady states P1

1 and P2
1 are unstable provided

χαū
λ

> K .
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Non-constant steady states and reduced system

The stationary problem for IPT1 may be reduced to the system
of two elliptic equations:

∆ū − div(ūχ∇w̄) = 0, x ∈ Ω,

dw ∆w̄ − µw̄ + α
(

1− F (ū)
λ

)
F (ū) = 0, x ∈ Ω .

with homogeneous Neumann boundary conditions.

Any solution of this system determines a solution of stationary
IPT1 Model
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linearization of the reduced system

Let us denote

Γ(u) =

(
1− F (u)

λ

)
F (u)

and

γ := Γ′(ū) =

(
1− 2F (ū)

λ

)
F ′(ū).

Linearization at the constant steady state (ū , w̄) leads to the
following eigenvalue problem (L)

∆φ− χū∆ψ = σφ,

dw ∆ψ − µψ + αγφ = σψ .
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Linearization

Let us define matrix

Bn =

[
−λn , χūλn
αγ , −λndw − 1

]

Proposition
A complex number σ is an eigenvalue iff there exists n ≥ 1 such
that σ is the eigenvalue to matrix Bn or σ = −µ . Moreover,
Re σ < 0 iff

λ1 >
αγχū − µ

dw
.
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Bifurcation for IPT1 model

If γ > 0 then it is convenient to choose χ as a bifurcation
parameter and then we obtain the stability condition for the
reduced problem

λ1 >
αγχū − µ

dw
.

Proposition
Assume 1-D case, γ > 0 and fix M > 0 . Then for any χ > χ1
there are non-constant steady states with mass M.

we adapt result by Xuefeng Wang and Quian Xu ( 2013)

each component of such a non-constant steady state may be a
monotone increasing or decreasing function. Using no-flux
boundary condition and periodic extension or reflection of
monotone function a non-monotone steady state may be
constructed.
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Comparison of IPT models

Matrix Bn corresponding to the reduced IPT2 system has
γ = −α

µF ′(ū) < 0. Then the space-homogeneous steady state
is linearly locally asymptotically stable for all set of parameters
and in particular it does not lose stability when χ is big enough.
The constant solution to the reduced stationary IPT2 system is
uniquely determined. Indeed, there is % > 0 such that

u = %eχw .

Then any non-zero steady state satisfies the following
semilinear elliptic equation

−∆w + µw + R(w) = 0 on Ω

with no-flux boundary condition and R(w) = α(1− F (%eχw )
λ ).

Since w 7−→ µw + R(w) for w > 0 is a strictly increasing
function classical arguments for monotone operators may be
applied.
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Stabilization of solutions

Assumptions :
λ > Fm,

there exists a positive constant v0 > 0 such that the initial data
v0 satisfies

v0 ≤ v0(x) ≤ 1

w0(x) ≥ 0 ,

M <
27

33

(
χ2α2F 2

m|Ω|2

2dw

(
1 +

F 2
m

λmin{λv0, (λ− Fm)}

))−1

.
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Stabilization of solutions

Theorem
Under assumptions above if Ω ⊂ R is a bounded and open
interval

u(·, t) −→ ū in L2(Ω) as t →∞,
v(·, t) −→ v̄ in Lp(Ω) as t →∞,
w(·, t) −→ w̄ in Lp(Ω) as t →∞ ,

for any p ∈ [1,∞)
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crucial energy estimate for N ≤ 2

We use the Sobolev embeddings and the Gagliardo-Nirenberg
inequality to find:∫

Ω
u(ln u−1)+

∫
Ω
|∇w |2+

∫
Ω

∣∣∣∣∇v
v

∣∣∣∣2+

∫ ∞
0

∫
Ω
|∇w |2+

∫ ∞
0

∫
Ω

|∇u|2

1 + u
≤ C.
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Space averaging for the long time.

‖u(·, t)− 1
|Ω|

∫
Ω

u(x , t)dx‖2 → 0

‖v(·, t)− 1
|Ω|

∫
Ω

v(x , t)dx‖p → 0

‖w(·, t)− 1
|Ω|

∫
Ω

w(x , t)dx‖p → 0

as t → +∞ .

We use results by Friedman and Tello (2002).
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Main conclusions

I the presence of taxis in search strategy does not warrant
formation of stationary patterns.

I even in the case of weak coupling between predator and
prey the pattern formation of prey may result ( e.g. if χ is
large enough) solely from specific prey-predator
interactions provided the search strategy of predator
admits migration towards gradient of chemical released by
prey injured during capturing.

I in the case of big density of predator the spatially
homogeneous steady state may be unstable even if
chemotaxis χ is small.
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