# Mathematical Epidemiology:Going beyondStatistical

# Mechanics (apparently...)

Alberto d'Onofrio, International Prevention Research Institute, Lyon, France. alberto.donofrio@i-pri.org

Piero Manfredi (Univ. Pisa),

Bruno Buonomo (Naples), Ernesto Salinelli (Novara), etc...

# Control of endemic SIR diseases through mandatory vaccination



# DISEASE-FREE EQUILIBRIUM DFE = (1-p,0) MAY-ANDERSON THRESHOLD

$$p_c = 1 - BRN^{-1}$$

 $p \ge p_c \Rightarrow DFE$  is Globally Attractive  $\Rightarrow$  Disease Eradicated  $p < p_c \Rightarrow DFE$  is UNSTABLE  $\Rightarrow$  Endemic Disease

#### EE = (1/BRN, Ie(p)) GLOBALLY STABLE

Intrinsic limitations of "Classical" Epidemic Models

• The SIR model is inspired to <u>chemistry</u> = humans are approximated as molecules in a chemical reaction into a (well-stirred) thank !

#### «Statistical physics» of Epidemics

## $S + I \xrightarrow{\beta} I$

# 

#### **SIR model = Particles-based model**

Human beings are NOT passive particles. They are <u>active</u> particles endowed with a "psychology". **Capasso and Serio (1978) first stressed** that models must face this challenge



"Particles" involved in epidemic models...

# WHATIFTHE VACCINATION IS NO MORE MANDATORY ? p = p(t)

A.d'O, Manfredi, Salinelli Theor Pop Biol (2007) A.d'O, Manfredi, Salinelli Math Med Bio (2009) A.d'O, Manfredi, Salinelli (2013)  Many families base their decisions to vaccinate on informations and rumours on:

-the epidemics: vaccinating more, when many news on disease and little otherwise.

-available information/rumours on safety of vaccine



# "(PSEUDO) Rational" exemption to vaccination

- Myopically parents compare the **perceived** low risk of getting disease and the (rumors-based..) **perceived**risk of vaccine side effects.
- BUT the disease level is currently low thanks to large levels of vaccination !!

**Simple Phenomenic Model** 

$$p(t) = p(M)$$

#### **<u>"NEW ENTRIES"</u>**

- M= Information index (?)
- p(M) = (information-dependent) vaccination rate
  at birth
- P'(M)>0





### <u>+ ENDEMIC «BEHAVIOR</u> DEPENDENT» EQUILIBRIUM

#### The information index M (1)

# The case of "current" information: M(t) = g(S(t), I(t))

**Examples:** 

 $g(S,I) = \alpha\beta SI$ g(S,I) = kI

(new cases per time unit) (current cases)

#### Information dependent on past history through delay Kernel K(t):

# $M = \int_{-\infty}^{t} g(S(\tau), I(\tau)) K(t - \tau) d\tau$

*K*(*x*)=*Dirac*(*x*) => no delay case. *K*(*x*)= a exp(-ax)

#### **Main questions**

Effects information-dependent of vaccination ?? -Could information-dependent vaccination allow diseases eradication even if the baseline policy  $(p_0)$  would **not**? ANSWER: NO -Does «memory»/delay affects the system stability ? ANSWER: YES

 $\mathbf{p} = \mathbf{p}(\mathbf{t})$ WHAT ABOUT THE DYNAMICS OF p(t) ? Bauch 05. d'Onofrio et al 2011, 2015: evolutionary game approach

Word of Mouth: switch of ideas after exchange of infos

Parents behave as total population

P:pro vaccine; A = against vaccine

P' = cPA - dPA

A' = -cPA + dPA

 $A + P = 1 \Longrightarrow P' = (c - d)P(1 - P)$ 

The rates of change: C and D

# D'ONOFRIO ET AL 2011 D(P)=k\*P (k = "imitation speed") C(M)=k\*h(M)

p' = k(h(M) - p)p(1 - p)NOTE THAT : k >> 1  $\Rightarrow$  p(t)  $\approx$  h(M)

#### Another Choice: Bauch 05

 $C = \theta I$ D:constant

## ERADICATION: impossible

INITATION SPEED K BIFURCATION PARAMETER

**Endemic Equilibrium INDEPENDENT OF K !** 

### **Role of imitation Speed K**

• BAUCH: oscillations for K over a threshold • D'ON: oscillations for K in an intermediate range + sufficiently steep h(I). If also

delayed information: CHAOS

**POSSIBLE ACTION OF** NATIONAL HEALTH **SYSTEM: INDUCING PEOPLE TO VACCINATE** d'Onofrio et al (2012)

**INDUCING PEOPLE TO VACCINATE** 

# INCLUDING SPONTANEOUS CHANGES (d'Onofrio and Manfredi, 2015)

P' = cPA - dPA + j(M)A - b(P)PA' = -cPA + dPA - j(M)A + b(P)PA + P = 1

 $\Rightarrow P' = (c-d)P(1-P) + j(M)(1-P) - b(P)P$ 

#### Eradication: POSSIBLE !!

$$p'(t) = k \left( h(I) - p(t) \right) p(t) (1 - p(t)) - G(t) (1 - p(t))$$

# $G(t) > kp_C^2 \Longrightarrow I(t) \longrightarrow 0$

#### Buonomo & d'Onofrio & Manfredi: Optimal Control

#### Aknowledgements

 Many thanks to Mirek, Urszula, Monika and Zuzanna for inviting me !

#### • To you for the patience ! "That's all Folks !" (B. Bunny and co.)



The Art of Market Line Annual