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Aim

Control of infectious diseases via vaccination!!!

Work based on
Optimal control of epidemiological SEIR models with L1-objectives 

and control and state constraints 
by Maurer and dP (submitted)

and
Optimal control of Infectious Diseases involving

Normalized SEIR Models
by Nogueira, Maurer and dP (working paper, to be submitted)
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1.   SEIR Model
2.   Brief Review of Optimal Control for SEIR Model 

•   with L1 cost 
•   with constraints and L1 cost 

3.  Optimal Control SEIR Model with periodic incidence rate
4.  Normalized Model and Optimal Control

•   a first choice of cost 
•   comparison
•   how to translate constraints

5.  FUTURE WORK
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•  Everyone is assumed to be susceptible,

•  Susceptible individuals become infected through horizontal transmission  with  infected individuals,
•  Infected People can either die or recover completely,
•  All recovered  individuals (vaccinated or recovered from infection) are immune.

Horizontal 
transmission:
from one 
individual to 
another by
direct contact 
(touching, biting), 
or indirect 
contact air 
(cough or 
sneeze).

1. SEIR MODEL

Horizontal 
transmission:
from one individual to 
another by
direct contact 
(touching, biting), or 
indirect contact air 
(cough or sneeze).

de Pinho, Maurer, Nogueira OCP for Epidemiology MMSLS2015, Bedlewo

4

fEcSI/N



•  S(t) : number of Susceptible individual.
•  E(t): number of Exposed, ind.
•  I(t): number of  Infectious ind
•  R(t): number of Recovered ind.
•  N(t):  total number of population 

ODE’s1. SEIR MODEL

N(t)=S(t)+E(t)+I(t)+R(t)
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>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Ṡ(t) = bN(t)� dS(t)� c
S(t)I(t)

N(t)
,

Ė(t) = c
S(t)I(t)

N(t)
� (f + d)E(t),

İ(t) = fE(t)� (g + a+ d)I(t),

Ṙ(t) = gI(t)� dR(t),

Ṅ(t) = (b� d)N(t)� aI(t),

with initial values

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, N(0) = N0.

vs. c̃S(t)I(t) (c̃ = c/Ñ).



Introducing Vaccination1. SEIR MODEL

Let u be the rate of vaccination.

Only Susceptible Individuals are vaccinated.

How to define Vaccination Policies?
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2. Optimal Control L1
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L1 cost Problem 

Minimize

Z T

0
(Ax(t) +Bu(t)) dt

subject to

ẋ(t) = f(x(t))� g(x(t))u(t),

u(t) 2 [0, 1] a.e. t,

x(0) = x0.

Counting !
number of vaccines!

Minimize

Z T

0
(AI(t) +Bu(t)) dt

subject to

˙

S(t) = bN(t)� dS(t)� c

S(t)I(t)

N(t)

� S(t)u(t),

˙

E(t) = c

S(t)I(t)

N(t)

� (f + d)E(t),

˙

I(t) = fE(t)� (g + a+ d)I(t),

˙

W (t) = S(t)u(t),

˙

N(t) = (b� d)N(t)� aI(t),

u(t) 2 [0, 1] a.e. t,

x(0) = x0.



2. Optimal Control L1
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L1 Cost: Optimal Controls 

Bang- Bang and Bang- Singular- Bang



2. Optimal Control Numerical Software

Optimal Control Problems solved by Direct Method:
discretize the problem and solve the optimization problem with NLSolvers 

Interface with NLP Solver used: 

ICLOCS developed by Paola Falugi, Eric Kerrigan and Eugene van Wyk

AMPL developed by Robert Fourer, David Gay and Brian Kerrighan at Bell Laboratories

With AMPL and ICLOCS  the NLS solver used is IPOPT.
Mostly 2000 or 10000 grid points and  Implicit Euler Scheme  with error tolerance 10-9

NOTE: L2 case vs L1 case
L1 case exhibits bang-bang controls and bang-singular-bang controls
whereas L2 does not.
•  ICLOCS was unable to determine the singular controls (chattering)
•  AMPL has not problem with singular controls
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2. Optimal Control 
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 Both AMPL and ICLOCS  provide the numerical multipliers. !
!
In all the above cases we validate numerical solutions !
using necesary and sufficient conditions. !
!
•  For L1 problems, when control is bang-bang, verification of SSC and 

determination of switching times following Maurer, Buskens, Kim, and 
Kaya (2005)  using the code !

•  NUDOCCCS;!
•  Implementation of Induced Optimization Problem with AMPL. !
!

•  For L1 problems, with singular controls, analytical expression tested 
numerically. !

Validation of numerical solutions



2. Optimal Control 
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Validation of numerical solutions



3. Periodic Incidence Rate
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Suppose that
•  Incidence rate is periodic being 0 in the warmer months (e.g.)
•  Susceptible individuals get exposed by contact with outside world. 

8
>>>>>>>>>>><

>>>>>>>>>>>:

Ṡ(t) = bN(t)� (d+ �(t))S(t)� c(t)
S(t)I(t)

N(t)
,

Ė(t) = c(t)
S(t)I(t)

N(t)
+ �(t)S(t)� (f + d)E(t),

İ(t) = fE(t)� (g + a+ d)I(t),

Ṙ(t) = gI(t)� dR(t),

Ṅ(t) = (b� d)N(t)� aI(t).

S E I R
bN

γ(t)S
dI+aI dRdS

c(t)SI/N
gIfE



3. Periodic Incidence Rate
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where(
c(t) = max {c0(1 + � sin(2⇡t� ⇡/2), c0}� c0

�(t) = �0(1 + sin(2⇡t� ⇡/2))

S E I R
bN

γ(t)S
dI+aI dRdS

c(t)SI/N
gIfE
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3. Periodic Incidence Rate
Parameter Description Value

b natural birth rate 0.012
d natural death rate 0.009
c0 ”incidence” coe�cient 0.004
� ”incidence” coe�cient 0.28
�0 ”incidence” coe�cient 0.002
e exposed to infectious rate 0.8
g recovery rate 0.15
a disease induced death rate 0.01
A weight parameter 1

B weight parameter 2

T number of years 20

S0 initial susceptible population 1165

E0 initial exposed population 0

I0 initial infected population 0

R0 initial recovered population 0

N0 initial population 1165

W0 initial vaccinated population 0

DISEASE PARAMETERS ARE NOT CLINICAL VALUES

For t=0
population

free of 
disease

~~European
values
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3. Periodic Incidence Rate Without Control

N(20)=1226

I(20)> 150
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3. Periodic Incidence Rate

Minimize

Z T

0
(AI(t) +Bu(t)) dt

subject to

˙

S(t) = bN(t)� (d+ �(t))S(t)� c(t)
S(t)I(t)

N(t)

� u(t)S(t),

˙

E(t) = c(t)
S(t)I(t)

N(t)

+ �(t)S(t)� (f + d)E(t),

˙

I(t) = fE(t)� (g + a+ d)I(t),

˙

N(t) = (b� d)N(t)� aI(t),

u(t) 2 [0, 1] a.e. t,

x(0) = x0.

OCP with  A=1and  B=2



OCP with  A=1and  B=2
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3. Periodic Incidence Rate

N(20)=1236>1226.

Infected I

Control  u



OCP with  A=1and  B=2
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3. Periodic Incidence Rate

Cost: 32
W(20)~130, 

N(20)~1237,

 I(20)=1

0  u  1
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3. Periodic Incidence Rate

Cost: 110  (vs 32)

I(20)=4

Recall that treatment of 
infected people is expensive

OCP with 0  u  0.2



de Pinho, Maurer, Nogueira OCP for Epidemiology MMSLS2015, Bedlewo

4. Normalized SEIR Model

	
   	
  S,	
  E,	
  I	
  and	
  R	
  represent	
  number	
  of	
  people.	
  	
  

	
   	
   	
   	
   	
  They	
  are	
  INTEGERS.	
  

So	
  …	
  how	
  to	
  interpret	
  I(t)=1.5?	
  

	
   	
  No	
  big	
  problem	
  if	
  the	
  populaEon	
  is	
  large,	
  but	
  

	
   	
  for	
  small	
  populaEons…	
  should	
  we	
  consider	
  

	
   	
   	
   	
   	
  Mixed	
  Integer	
  Programming?	
  	
  

Well,	
  we	
  believe	
  that	
  	
  the	
  spreading	
  of	
  any	
  infecEous	
  	
  diseases	
  	
  	
  

mainly	
  based	
  on	
  the	
  distribuEon	
  of	
  the	
  populaEon	
  by	
  compartments.	
  

And	
  with	
  fracEon	
  we	
  can	
  work	
  with	
  conEnuous	
  variables.	
  



4. Normalized SEIR Model
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Idea: Normalization of the population.

s(t) =
S(t)

N(t)
, e(t) =

E(t)

N(t)
, i(t) =

I(t)

N(t)
, r(t) =

R(t)

N(t)
,

and

s(t) + e(t) + i(t) + r(t) = 1 for all t.

Now s, e, i and r denote the PERCENTAGE of the total population in com-

partments S, E, I and R.

Size of the total population is ignored.



4. Normalized SEIR Model
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ṡ(t) =b� cs(t)i(t)� bs(t) + ai(t)s(t)� u(t)s(t),

ė(t) =cs(t)i(t)� (f + b)e(t) + ai(t)e(t),

i̇(t) =fe(t)� (g + a+ b)i(t) + ai2(t),

ṙ(t) =gi(t)� rb(t) + ai(t)r(t) + u(t)s(t).

s
e

i
r

b ais

air

aii

aie

us

aibi
bebs

br

csi

fe gi



4. Normalized SEIR Model
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Choice of Cost

How to define the L

1 cost for the Normalized SEIR Model?

In the SEIR model cost is

J1(x, u) =

Z T

0
AI(t) +Bu(t) dt = B

Z T

0

A

B

I(t) + u(t) dt.

Thus minimizing J1 turns up minimzing

Z T

0
�I(t) + u(t) dt, � =

A

B

.

In the Normalized SEIR Model i is a percentage. So ”similar cost” would be

Z T

0
⇢i(t) + u(t) dt, ⇢ =

A ⇤ ⇡
B

where ⇡ is roughly approximated to the average of TOTAL population in T

years.



4. Normalized SEIR Model
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Parameters

Parameter Description Value

b Natural birth rate 0.011

d Death rate 0.009

c Incidence coe�cient in (P ) 1.1

f Exposed to infectious rate 0.5

g Recovery rate 0.1

a Disease induced death rate 0.2

A weight of infected population 3

B weight of the vaccination e↵ort 10

⇢ Weight parameter 300 (A = 3, B = 10,⇡ = 1000)

T Number of years 20

s0 Initial susceptible population 0.858

e0 Initial exposed population 0.086

i0 Initial infected population 0.043

In the above table we have s0 = S0/N0, e0 = E0/N0 and i0 = I0/N0 where

N0 = 1165, S0 = 1000, I0 = 50 and E0 = 100 are the values used in M&dP 15

and L&N10.

Very high



3. Normalized SEIR Model
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Systems with NO control

Susceptible population Infected population

NORMALIZED

D
eadly!



Comparison of  Problems
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8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Minimize

Z T

0
(AI(t) +Bu(t)) dt

subject to

˙

S(t) = bN(t)� dS(t)� c

S(t)I(t)
N(t) � u(t)S(t),

˙

E(t) = c

S(t)I(t)
N(t) � (f + d)E(t),

˙

I(t) = fE(t)� (g + a+ d)I(t),

˙

N(t) = (b� d)N(t)� aI(t),

u(t) 2 [0, 1] for æ t 2 [0, T ],

x(0) = x0 = (S0, E0, I0, N0).

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Minimize

Z T

0
(⇢i(t) + u(t))) dt

subject to

ṡ(t) = b� cs(t)i(t)� bs(t) + ai(t)s(t)� u(t)s(t),

ė(t) = cs(t)i(t)� (f + b)e(t) + ai(t)e(t),

˙

i(t) = fe(t)� (g + a+ b)i(t) + ai

2
(t),

u(t) 2 [0, 1] for a. e. t 2 [0, T ],

x(0) = (s(0), e(0), i(0)) = (s0, e0, i0).

Not Normalized Problem

Normalized Problem

4. Normalized SEIR Model
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Comparison of  Problems4. Normalized SEIR Model

Classical Model: A=3, B=10

Normalized Model: ρ=300
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Comparison of  Problems4. Normalized SEIR Model

Classical Model: A=3, B=10 Normalized Model: ρ=300
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4. Normalized SEIR Model

Classical Model: A=3, B10, d=0.0099

Classical Model: A=3, B10, d=0.0005

Normalized model does not depend on the death rate. 
But THE CLASSICAL model does, right??? YES!!!

T
otal population
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4. Normalized SEIR Model

Classical Model: A=3, B10, d=0.0099

Classical Model: A=3, B10, d=0.0005

Normalized model does not depend on the death rate. 
But classical model does. DOES IT?????

C
ontrol u
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Comparison of  Problems4. Normalized SEIR Model

Classical Model: A=3, B=10, d=0.0099 Classical Model: A=3, B=10, d=0.0005

Do the optimal controls coincide? The answer is NO.
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Comparison of  Problems4. Normalized SEIR Model

Classical Model: Different death rates gives us different optimal controls.
 
This DOES NOT  discard the NORMALIZED SEIR MODEL!

It does put the pressure on the criterious choice of ⇢ in the cost.

Indeed, to compare Classical models with Normalized models we should have

⇢(t) =
A ⇤N(t)

B
.

We use instead ⇡ as a rough approximation ⇡ of the average population N(t):

⇢ =

A ⇤ ⇡
B

.
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4. Normalized SEIR Model

This comparison between models raises the question:

WHAT IS THE APPROPRIATE COST FOR 
OPTIMAL CONTROL

INVOLVING
NORMALIZED MODELS?

���
Idea: Multi- objective cost????
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5. Future Work

For any of the mentioned models
•  For specific disease with “real” parameters ….
•  Introduction of delays. How???

 For the Periodic Incidence Rate
•  Can we treat the case of flu??? Subdivision of S 
•  compartment -old or children???

For the Normalized Case
•  Multi-objective cost
•  New and meaningful constraints

Also, sensitivity analysis w.r.t. the parameters.
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