

Optimal Control for Infectious Diseases (LI case)

Maria do Rosário de Pinho, Helmut Maurer and Filipa Nogueira

OCP for Epidemiology

de Pinho, Maurer, Nogueira

Control of infectious diseases via vaccination!!!

Work based on Optimal control of epidemiological SEIR models with L1-objectives and control and state constraints by Maurer and dP (submitted)

and

Optimal control of Infectious Diseases involving Normalized SEIR Models by Nogueira, Maurer and dP (working paper, to be submitted)

A special thanks to Urszula Ledzewicz and Heinz Schättler for numerous discussions on this work

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Outline

- I. SEIR Model
- 2. Brief Review of Optimal Control for SEIR Model
 - with L1 cost
 - with constraints and L1 cost
- 3. Optimal Control SEIR Model with periodic incidence rate
- 4. Normalized Model and Optimal Control
 - a first choice of cost
 - comparison
 - how to translate constraints
- 5. FUTURE WORK

I. SEIR MODEL

- Everyone is assumed to be susceptible,
- Susceptible individuals become infected through horizontal transmission with infected individuals,
- Infected People can either **die** or **recover** completely,
- All **recovered** individuals (vaccinated or recovered from infection) are immune.

Horizontal transmission:

4

from one individual to another by direct contact (touching, biting), or indirect contact air (cough or sneeze).

de Pinho, Maurer, Nogueira

OCP for Epidemiology

I. SEIR MODEL

$$\begin{split} \dot{S}(t) &= bN(t) - dS(t) - c \frac{S(t)I(t)}{N(t)}, \quad \text{vs. } \tilde{c}S(t)I(t) \quad (\tilde{c} = c/\tilde{N}), \\ \dot{E}(t) &= c \frac{S(t)I(t)}{N(t)} - (f+d)E(t), \\ \dot{I}(t) &= fE(t) - (g+a+d)I(t), \\ \dot{R}(t) &= gI(t) - dR(t), \\ \dot{N}(t) &= (b-d)N(t) - aI(t), \\ \text{with initial values} \\ S(0) &= S_0, \ E(0) &= E_0, \ I(0) = I_0, \ R(0) = R_0, \ N(0) = N_0. \end{split}$$

ODF's

N(t)=S(t)+E(t)+I(t)+R(t)

- S(t) : number of Susceptible individual.
- E(t): number of Exposed, ind.
- I(t): number of Infectious ind
- R(t): number of **Recovered** ind.
- N(t): total number of population

de Pinho, Maurer, Nogueira

OCP for Epidemiology

I. SEIR MODEL Introducing Vaccination

Let u be the rate of vaccination.

Only Susceptible Individuals are vaccinated.

How to define Vaccination Policies?

de Pinho, Maurer, Nogueira

OCP for Epidemiology

2. Optimal Control LI L^I cost Problem

$$\begin{split} \text{Minimize } & \int_{0}^{T} \left(AI(t) + Bu(t) \right) dt \\ \text{subject to} \\ \dot{S}(t) &= bN(t) - dS(t) - c \frac{S(t)I(t)}{N(t)} - S(t)u(t), \\ \dot{E}(t) &= c \frac{S(t)I(t)}{N(t)} - (f+d)E(t), \\ \dot{I}(t) &= fE(t) - (g+a+d)I(t), \\ \dot{W}(t) &= S(t)u(t), \\ \dot{W}(t) &= S(t)u(t), \\ u(t) &\in [0,1] \text{ a.e. } t, \\ x(0) &= x_0. \end{split}$$

de Pinho, Maurer, Nogueira

OCP for Epidemiology

 $x(0) = x_0.$

2. Optimal Control LI L^I Cost: Optimal Controls

Bang- Bang and Bang- Singular- Bang

de Pinho, Maurer, Nogueira

OCP for Epidemiology

2. Optimal Control Numerical Software

Optimal Control Problems solved by **Direct Method**:

discretize the problem and solve the optimization problem with NLSolvers

Interface with NLP Solver used:

ICLOCS developed by Paola Falugi, Eric Kerrigan and Eugene van Wyk

AMPL developed by Robert Fourer, David Gay and Brian Kerrighan at Bell Laboratories

With **AMPL** and **ICLOCS** the NLS solver used is **IPOPT**.

Mostly 2000 or 10000 grid points and Implicit Euler Scheme with error tolerance 10-9

NOTE: L² case vs L¹ case

 L^{1} case exhibits bang-bang controls and bang-singular-bang controls whereas L^{2} does not.

- **ICLOCS** was unable to determine the singular controls (chattering)
- **AMPL** has not problem with singular controls

OCP for Epidemiology

Both AMPL and **ICLOCS** provide the numerical multipliers.

In all the above cases we validate numerical solutions using necesary and sufficient conditions.

- For L¹ problems, when control is bang-bang, verification of SSC and determination of switching times following Maurer, Buskens, Kim, and Kaya (2005) using the code
 - NUDOCCCS;
 - Implementation of Induced Optimization Problem with AMPL.
- For L¹ problems, with singular controls, analytical expression tested numerically.

2. Optimal Control

Validation of numerical solutions

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Suppose that

- Incidence rate is periodic being 0 in the warmer months (e.g.)
- Susceptible individuals get exposed by contact with outside world.

$$\begin{array}{c} \overset{bN}{\longrightarrow} \underbrace{S}_{dS} \overset{c(t)Sl/N}{\rightarrow} \underbrace{F}_{dI} & \underset{dI}{\longrightarrow} \underbrace{F}_{dI} & \underset{dI}{\longrightarrow} & \underset{dI}{\longrightarrow} & \underset{dI}{\longrightarrow} & \underset{dR}{\longrightarrow} & \underset{dI}{\longrightarrow} & \underset{$$

de Pinho, Maurer, Nogueira

OCP for Epidemiology

where

$$\begin{aligned} c(t) &= \max \left\{ c_0 (1 + \delta \sin(2\pi t - \pi/2), c_0 \right\} - c_0 \\ \gamma(t) &= \gamma_0 (1 + \sin(2\pi t - \pi/2)) \end{aligned}$$

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Parameter	Description	Value	
b	natural birth rate	0.012	~~European
d	natural death rate	0.009	values
c_0	"incidence" coefficient	0.004	
δ	"incidence" coefficient	0.28	
γ_0	"incidence" coefficient	0.002	
e	exposed to infectious rate	0.8	
g	recovery rate	0.15	
a	disease induced death rate	0.01	
T	number of years	20	_
S_0	initial susceptible population	1165	For t=0
E_0	initial exposed population	0	
I_0	initial infected population	0	population
R_0	initial recovered population	0	free of
N_0	initial population	1165	
W_0	initial vaccinated population	0	disease

DISEASE PARAMETERS ARE NOT CLINICAL VALUES

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Without Control

N(20)=1226

I(20)> I 50

de Pinho, Maurer, Nogueira

OCP for Epidemiology

OCP with A=I and B=2

Minimize
$$\int_0^T (AI(t) + Bu(t)) dt$$

subject to

$$\begin{split} \dot{S}(t) &= bN(t) - (d + \gamma(\mathbf{t}))S(t) - \mathbf{c}(\mathbf{t})\frac{S(t)I(t)}{N(t)} - u(t)S(t), \\ \dot{E}(t) &= \mathbf{c}(\mathbf{t})\frac{S(t)I(t)}{N(t)} + \gamma(\mathbf{t})S(t) - (f + d)E(t), \\ \dot{I}(t) &= fE(t) - (g + a + d)I(t), \\ \dot{N}(t) &= (b - d)N(t) - aI(t), \\ u(t) &\in [0, 1] \text{ a.e. } t, \\ x(0) &= x_0. \end{split}$$

de Pinho, Maurer, Nogueira

OCP for Epidemiology

OCP with A=I and B=2

de Pinho, Maurer, Nogueira

OCP for Epidemiology

OCP with A=land B=2

de Pinho, Maurer, Nogueira

OCP for Epidemiology

OCP with $0 \le u \le 0.2$

de Pinho, Maurer, Nogueira

OCP for Epidemiology

S, E, I and R represent number of people. They are INTEGERS. So ... how to interpret I(t)=1.5? No big problem if the population is large, but for small populations... should we consider *Mixed Integer Programming*?

Well, we believe that the spreading of any infectious diseases mainly based on the distribution of the population by compartments. And with fraction we can work with continuous variables.

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Idea: Normalization of the population.

and

$$s(t) = \frac{S(t)}{N(t)}, \quad e(t) = \frac{E(t)}{N(t)}, \quad i(t) = \frac{I(t)}{N(t)}, \quad r(t) = \frac{R(t)}{N(t)},$$

$$s(t) + e(t) + i(t) + r(t) = 1 \text{ for all } t.$$

Now s, e, i and r denote the **PERCENTAGE** of the total population in compartments S, E, I and R.

Size of the total population is ignored.

de Pinho, Maurer, Nogueira

OCP for Epidemiology

4. Normalized SEIR Model

$$\begin{split} \dot{s}(t) = & b - cs(t)i(t) - bs(t) + ai(t)s(t) - u(t)s(t), \\ \dot{e}(t) = & cs(t)i(t) - (f + b)e(t) + ai(t)e(t), \\ \dot{i}(t) = & fe(t) - (g + a + b)i(t) + ai^2(t), \\ \dot{r}(t) = & gi(t) - rb(t) + ai(t)r(t) + u(t)s(t). \end{split}$$

de Pinho, Maurer, Nogueira

OCP for Epidemiology

4. Normalized SEIR Model Choice of Cost

How to define the L^1 cost for the Normalized SEIR Model?

In the SEIR model cost is

$$J_1(x,u) = \int_0^T AI(t) + Bu(t) \, dt = B \int_0^T \frac{A}{B} I(t) + u(t) \, dt.$$

Thus minimizing J_1 turns up minimizing

$$\int_0^T \beta I(t) + u(t) \, dt, \quad \beta = \frac{A}{B}.$$

In the Normalized SEIR Model i is a percentage. So "similar cost" would be

$$\int_{0}^{T} \rho i(t) + u(t) \, dt, \quad \rho = \frac{A * \pi}{B}$$

where π is *roughly* approximated to the average of TOTAL population in T years.

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Parameters

Parameter	Description	Value	
b	Natural birth rate	0.011	
d	Death rate	0.009	
С	Incidence coefficient in (P)	1.1 🗲	Very high
\mathbf{f}	Exposed to infectious rate	0.5	
g	Recovery rate	0.1	
a	Disease induced death rate	0.2	
A	weight of infected population	3	
В	weight of the vaccination effort	10	
ho	Weight parameter	300	$(A = 3, B = 10, \pi = 1000)$
${ m T}$	Number of years	20	
s_0	Initial susceptible population	0.858	
e_0	Initial exposed population	0.086	
i_0	Initial infected population	0.043	

In the above table we have $s_0 = S_0/N_0$, $e_0 = E_0/N_0$ and $i_0 = I_0/N_0$ where $N_0 = 1165$, $S_0 = 1000$, $I_0 = 50$ and $E_0 = 100$ are the values used in M&dP 15 and L&N10.

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Systems with **NO control**

Susceptible population

NORMALIZED

Infected population

de Pinho, Maurer, Nogueira

OCP for Epidemiology

4. Normalized SEIR Model

Comparison of Problems

Not Normalized Problem

 $\begin{aligned} \text{Minimize} & \int_{0}^{T} \left(AI(t) + Bu(t) \right) \, dt \\ \text{subject to} \\ \\ \dot{S}(t) &= bN(t) - dS(t) - c \frac{S(t)I(t)}{N(t)} - u(t)S(t) \\ \\ \dot{E}(t) &= c \frac{S(t)I(t)}{N(t)} - (f+d)E(t), \\ \\ \dot{I}(t) &= fE(t) - (g+a+d)I(t), \\ \\ \dot{N}(t) &= (b-d)N(t) - aI(t), \\ \\ u(t) &\in [0,1] \quad \text{for } \& t \in [0,T], \\ x(0) &= x_{0} = (S_{0}, E_{0}, I_{0}, N_{0}). \end{aligned}$

$$S(t),$$

$$Normalized Problem$$

$$Minimize \int_0^T (\rho i(t) + u(t))) dt$$

$$subject to$$

$$\dot{s}(t) = b - cs(t)i(t) - bs(t) + ai(t)s(t) - u(t)s(t),$$

$$\dot{e}(t) = cs(t)i(t) - (f + b)e(t) + ai(t)e(t),$$

$$\dot{i}(t) = fe(t) - (g + a + b)i(t) + ai^2(t),$$

$$u(t) \in [0, 1] \text{ for a. e. } t \in [0, T],$$

$$x(0) = (s(0), e(0), i(0)) = (s_0, e_0, i_0).$$

de Pinho, Maurer, Nogueira

OCP for Epidemiology

4. Normalized SEIR Model

Comparison of Problems

Classical Model: A=3, B=10

Normalized Model: ρ =300

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Comparison of Problems

Classical Model: A=3, B=10

Normalized Model: ρ =300

de Pinho, Maurer, Nogueira

OCP for Epidemiology

4. Normalized SEIR Model

Normalized model does not depend on the death rate. But THE CLASSICAL model does, right??? YES!!!

Classical Model: A=3, B10, d=0.0099 Total population ~ Population Time [years]

Classical Model: A=3, B10, d=0.0005

Total population

de Pinho, Maurer, Nogueira

OCP for Epidemiology

4. Normalized SEIR Model

Normalized model does not depend on the death rate. But classical model does. **DOES IT**?????

Classical Model: A=3, B10, d=0.0099

Classical Model: A=3, B10, d=0.0005

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Comparison of Problems

Do the optimal controls coincide? The answer is NO.

de Pinho, Maurer, Nogueira

OCP for Epidemiology

Comparison of Problems

Classical Model: Different death rates gives us different optimal controls.

This DOES NOT discard the NORMALIZED SEIR MODEL!

It does put the pressure on the criterious choice of ρ in **the cost**.

Indeed, to compare Classical models with Normalized models we should have

$$\rho(t) = \frac{A * N(t)}{B}.$$

We use instead π as a rough approximation π of the average population N(t):

$$\rho = \frac{A * \pi}{B}$$

de Pinho, Maurer, Nogueira

OCP for Epidemiology

This comparison between models raises the question:

WHAT IS THE APPROPRIATE COST FOR OPTIMAL CONTROL INVOLVING NORMALIZED MODELS?

Idea: Multi- objective cost????

de Pinho, Maurer, Nogueira

OCP for Epidemiology

5. Future Work

For any of the mentioned models

- For specific disease with "real" parameters
- Introduction of delays. How???

For the Periodic Incidence Rate

- Can we treat the case of flu??? Subdivision of S
- compartment -old or children???

For the Normalized Case

- Multi-objective cost
- New and meaningful constraints

Also, sensitivity analysis w.r.t. the parameters.

References

H. Maurer, C. Buskens, J.-H.R. Kim, and Y. Kaya, *Optimization methods for the verification of second-order sufficient conditions for bang-bang controls,* Optimal Control Methods and Applications, 26, (2005).

> N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, SIAM Advances in Design and Control, 24, SIAM Publications, Philadelphia, 2013.

dP, Igor Kornienko and Helmut Maurer *Optimal Control of a SEIR Model with Mixed Constraints and L¹ Control* CONTROLO'2014 -Lecture Notes in Electrical Engineering 321

> Biswas, Paiva & de Pinho *A SEIR model for control of infectious diseases with constraints*, Mathematical Biosciences and Engineering, 11, No. 4, (2014).

Igor Kornienko, LT Paiva, dP Introducing State Constraints in Optimal Control for Health Problems Procedia Technology, 2014

de Pinho, Maurer, Nogueira

OCP for Epidemiology

MdR de Pinho (FEUP & ISR) OCP for Epidemiology

NPOCG Rome 2014

de Pinho, Maurer, Nogueira

OCP for Epidemiology